
Prado v3.0 Quick Start Tutorial 1

Qiang Xue, Wei Zhuo

January 29, 2006

1Copyright 2005-2006. All Rights Reserved.

Contents

Contents i

Preface ix

License xi

1 Getting Started 1

1.1 Welcome to the PRADO QuickStart Tutorial . 1

1.2 What is PRADO? . 1

1.3 Installing PRADO . 2

2 Fundamentals 3

2.1 Architecture . 3

2.2 Components . 3

2.2.1 Component Properties . 3

2.2.2 Component Events . 5

2.2.3 Namespaces . 6

2.2.4 Component Instantiation . 7

i

2.3 Controls . 8

2.3.1 Control Tree . 8

2.3.2 Control Identification . 8

2.3.3 Naming Containers . 9

2.3.4 ViewState and ControlState . 9

2.4 Pages . 10

2.4.1 PostBack . 10

2.4.2 Page Lifecycles . 10

2.5 Modules . 11

2.5.1 Request Module . 11

2.5.2 Response Module . 11

2.5.3 Session Module . 12

2.5.4 Error Handler Module . 12

2.5.5 Custom Modules . 12

2.6 Services . 12

2.6.1 Page Service . 13

2.7 Applications . 14

2.7.1 Directory Organization . 14

2.7.2 Application Deployment . 15

2.7.3 Application Lifecycles . 15

2.8 Sample: Hello World . 15

2.9 Sample: Hangman Game . 16

3 Configurations 21

ii

3.1 Configuration Overview . 21

3.2 Templates: Part I . 21

3.2.1 Component Tags . 22

3.2.2 Template Control Tags . 23

3.2.3 Comment Tags . 23

3.3 Templates: Part II . 24

3.3.1 Dynamic Content Tags . 24

3.4 Templates: Part III . 27

3.4.1 Dynamic Property Tags . 27

3.5 Application Configurations . 29

3.6 Page Configurations . 31

4 Controls 33

4.1 Controls Overview . 33

4.2 Simple HTML Controls . 33

4.2.1 TLabel . 33

4.2.2 THyperLink . 34

4.2.3 TImage . 34

4.2.4 TPanel . 34

4.2.5 TTable . 34

4.2.6 TTextBox . 35

4.2.7 TButton . 35

4.2.8 TLinkButton . 35

4.2.9 TImageButton . 36

iii

4.2.10 TCheckBox . 36

4.2.11 TRadioButton . 36

4.3 List Controls . 37

4.3.1 TListBox . 38

4.3.2 TDropDownList . 38

4.3.3 TCheckBoxList . 39

4.3.4 TRadioButtonList . 39

4.3.5 TBulletList . 39

4.4 Validation Controls . 40

4.4.1 TRequiredFieldValidator . 41

4.4.2 TRegularExpressionValidator . 41

4.4.3 TEmailAddressValidator . 42

4.4.4 TCompareValidator . 42

4.4.5 TCustomValidator . 43

4.4.6 TValidationSummary . 43

4.5 TDataList . 43

4.6 TDataGrid . 43

5 Security 45

5.1 Authentication and Authorization . 45

5.1.1 How PRADO Auth Framework Works . 45

5.1.2 Using PRADO Auth Framework . 46

5.1.3 Using TUserManager . 48

5.2 Viewstate Protection . 48

iv

5.3 Cross Site Scripting Prevention . 49

6 Advanced Topics 51

6.1 Assets . 51

6.1.1 Asset Publishing . 51

6.1.2 Customization . 52

6.1.3 Performance . 52

6.1.4 A Toggle Button Example . 53

6.2 Master and Content . 54

6.3 Themes and Skins . 55

6.3.1 Introduction . 55

6.3.2 Understanding Themes . 56

6.3.3 Using Themes . 56

6.3.4 Theme Storage . 57

6.3.5 Creating Themes . 57

6.4 Persistent State . 58

6.4.1 View State . 58

6.4.2 Control State . 58

6.4.3 Application State . 59

6.4.4 Session State . 59

6.5 Logging . 59

6.5.1 Using Logging Functions . 59

6.5.2 Message Routing . 60

6.5.3 Message Filtering . 61

v

6.6 Internationalization (I18N) and Localization (L10N) 61

6.6.1 Separate culture/locale sensitive data . 62

6.6.2 Configuration . 63

6.6.3 What to do with messages.xml? . 63

6.6.4 Setting and Changing Culture . 64

6.6.5 Localizing your Prado application . 65

6.6.6 Using localize function to translate text within PHP 65

6.6.7 Compound Messages . 65

6.7 I18N Components . 66

6.7.1 TTranslate . 66

6.7.2 TDateFormat . 67

6.7.3 TNumberFormat . 67

6.7.4 TTranslateParameter . 68

6.7.5 TChoiceFormat . 68

6.8 Error Handling and Reporting . 69

6.8.1 Exception Classes . 69

6.8.2 Raising Exceptions . 70

6.8.3 Error Capturing and Reporting . 70

6.8.4 Customizing Error Display . 70

6.9 Performance Tuning . 72

6.9.1 Caching . 72

6.9.2 Using pradolite.php . 73

6.9.3 Changing Application Mode . 73

vi

6.9.4 Reducing Page Size . 73

6.9.5 Other Techniques . 74

vii

viii

Preface

Prado quick start doc

ix

x

License

PRADO is free software released under the terms of the following BSD license.
Copyright 2004-2006, PradoSoft (http://www.pradosoft.com)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the developer nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

xi

Chapter 1

Getting Started

1.1 Welcome to the PRADO QuickStart Tutorial

This QuickStart tutorial is meant to get you quickly started to build your own Web applications
based on PRADO.

1.2 What is PRADO?

PRADO stands for PHP Rapid Application Development Object-oriented.

PRADO is a component-based and event-driven programming framework for developing Web ap-
plications in PHP 5.

PRADO stipulates a protocol of writing and using components to construct Web applications.
A component is a software unit that is self-contained and can be reused with trivial customiza-
tion. New components can be developed by either inheriting or composing from existing ones.
Component-based programming brings great freedom in teamwork anf offers the ultimate exten-
sibility and maintenability to the code. PRADO implements a set of elementary components that
represent commonly used Web elements, such as input field, checkbox, dropdown list, etc.

PRADO implements an event-driven programming scheme that allows delegation of extensible
behavior to components. End-user activities, such as clicking on a submit button, changing the

1

Chapter 1. Getting Started

content in an input field, are captured as server events. Methods or functions may be attached
to these events so that when the events happen, they are invoked automatically to respond to the
events. Compared with the traditional Web programming in which developers have to deal with
the raw POST or GET variables, event-driven programming helps developers better focus on the
necessary logic and reduces significantly the low-level repetitive coding.

Developing a PRADO Web application mainly involves instantiating prebuilt component types,
configuring them by setting their properties, responding to their events by writing handler func-
tions, and composing them into pages for the application. It is very similar to RAD toolkits, such
as Borland Delphi and Microsoft Visual Basic, that are used to develop desktop GUI applications.

1.3 Installing PRADO

If you are viewing this page from your own Web server, you are already done with the installation.
The instructions at the end of this page, however, may still be useful for you to troubleshoot issues
happened during your development based on PRADO.

Installation of PRADO is very easy. Follow the following steps,

1. Go to pradosoft.com to grab a latest version of PRADO.

2. Unpack the PRADO release file using unzip on Linux or winzip on Windows. A directory
named prado will be created under the working directory.

3. Copy or upload everything under the prado directory to the DocumentRoot directory (or a
subdirectory) of the Web server.

4. Your installation of PRADO is done and you can start to play with the demo applications
included in the PRADO release via URL http://web-server-address/demos/. This QuickStart
Tutorial is one of such applications.

If you encounter any problems with the demo applications, please use the PRADO requirement
checker script to check first if your server configuration fullfils the conditions required by PRADO.

The minimum requirement by PRADO is that the Web server support PHP 5. PRADO has been
tested with Apache Web server on Windows and Linux. Highly possibly it may also run on other
platforms with other Web servers, as long as PHP 5 is supported.

2

http://www.pradosoft.com/

Chapter 2

Fundamentals

2.1 Architecture

PRADO is primarily a presentational framework, although it is not limited to be so. The framework
focuses on making Web programming, which deals most of the time with user interactions, to be
component-based and event-driven so that developers can be more productive. The following class
tree depicts the skeleton classes provided by PRADO,

When a PRADO application is processing a page request, its static object diagram can be shown
as follows,

2.2 Components

A component is an instance of TComponent or its child class. The base class TComponent implements
the mechanism of component properties and events.

2.2.1 Component Properties

A component property can be viewed as a public variable describing a specific aspect of the
component, such as the background color, the font size, etc. A property is defined by the existence

3

Chapter 2. Fundamentals

of a getter and/or a setter method in the component class. For example, in TControl, we define
its ID property using the following getter and setter methods,

class TControl extends TComponent {

public function getID() {

...

}

public function setID($value) {

...

}

}

4

2.2. Components

To get or set the ID property, do as follows, just like working with a variable,

$id = $component->ID;

$component->ID = $id;

This is equivalent to the following,

$id = $component->getID();

$component->setID($id);

A property is read-only if it has a getter method but no setter method. Since PHP method names
are case-insensitive, property names are also case-insensitive. A component class inherits all its
ancestor classes’ properties.

Subproperties

A subproperty is a property of some object-typed property. For example, TWebControl has a Font

property which is of TFont type. Then the Name property of Font is referred to as a subproperty
(with respect to TWebControl).

To get or set the Name subproperty, use the following method,

$name = $component->getSubProperty(’Font.Name’);

$component->setSubProperty(’Font.Name’, $name);

This is equivalent to the following,

$name = $component->getFont()->getName();

$component->getFont()->setName($name);

2.2.2 Component Events

Component events are special properties that take method names as their values. Attaching
(setting) a method to an event will hook up the method to the places at which the event is raised.
Therefore, the behavior of a component can be modified in a way that may not be foreseen during
the development of the component.

5

Chapter 2. Fundamentals

A component event is defined by the existence of a method whose name starts with the word on.
The event name is the method name and is thus case-insensitve. For example, in TButton, we have

class TButton extends TWebControl {

public function onClick($param) {

...

}

}

This defines an event named OnClick, and a handler can be attached to the event using one of the
following ways,

$button->OnClick = $callback;

$button->OnClick->add($callback);

$button->OnClick[] = $callback;

$button->attachEventHandler(’OnClick’ , $callback);

where $callback refers to a valid PHP callback (e.g. a function name, a class method array($object,’method’),
etc.)

2.2.3 Namespaces

A namespace refers to a logical grouping of some class names so that they can be differentiated
from other class names even if their names are the same. Since PHP does not support namespace
intrinsically, you cannot create instances of two classes who have the same name but with different
definitions. To differentiate from user defined classes, all PRADO classes are prefixed with a letter
’T’ (meaning ’Type’). Users are advised not to name their classes like this. Instead, they may
prefix their class names with any other letter(s).

A namespace in PRADO is considered as a directory containing one or several class files. A class
may be specified without ambiguity using such a namespace followed by the class name. Each
namespace in PRADO is specified in the following format,

PathAlias.Dir1.Dir2

where PathAlias is an alias of some directory, while Dir1 and Dir2 are subdirectories under that di-
rectory. A class named MyClass defined under Dir2 may now be fully qualified as PathAlias.Dir1.Dir2.MyClass.

6

2.2. Components

To use a namespace in code, do as follows,

Prado::using(’PathAlias.Dir1.Dir2.*’);

which appends the directory referred to by PathAlias.Dir1.Dir2 into PHP include path so that
classes defined under that directory may be instantiated without the namespace prefix. You may
also include an individual class definition by

Prado::using(’PathAlias.Dir1.Dir2.MyClass’);

which will include the class file if MyClass is not defined.

For more details about defining path aliases, see application configuration section.

2.2.4 Component Instantiation

Component instantiation means creating instances of component classes. There are two types of
component instantation: static instantiation and dynamic instantiation. The created components
are called static components and dynamic components, respectively.

Dynamic Component Instantiation

Dynamic component instantiation means creating component instances in PHP code. It is the
same as the commonly referred object creation in PHP. A component can be dynamically created
using one of the following two methods in PHP,

$component = new ComponentClassName;

$component = Prado::createComponent(’ComponentType’);

where ComponentType refers to a class name or a type name in namespace format (e.g. System.Web.UI.TControl).
The second approach is introduced to compensate for the lack of namespace support in PHP.

Static Component Instantiation

Static component instantiation is about creating components via configurations. The actual cre-
ation work is done by the PRADO framework. For example, in an application configuration, one

7

Chapter 2. Fundamentals

can configure a module to be loaded when the application runs. The module is thus a static
component created by the framework. Static component instantiation is more commonly used in
templates. Every component tag in a template specifies a component that will be automatically
created by the framework when the template is loaded. For example, in a page template, the
following tag will lead to the creation of a TButton component on the page,

<com:TButton Text="Register" />

2.3 Controls

A control is an instance of class TControl or its subclass. A control is a component defined in
addition with user interface. The base class TControl defines the parent-child relationship among
controls which reflects the containment relationship among user interface elements.

2.3.1 Control Tree

Controls are related to each other via parent-child relationship. Each parent control can have one or
several child controls. A parent control is in charge of the state transition of its child controls. The
rendering result of the child controls are usually used to compose the parent control’s presentation.
The parent-child relationship brings together controls into a control tree. A page is at the root of
the tree, whose presentation is returned to the end-users.

The parent-child relationship is usually established by the framework via templates. In code, you
may explicitly specify a control as a child of another using one of the following methods,

$parent->Controls->add($child);

$parent->Controls[]=$child;

where the property Controls refers to the child control collection of the parent.

2.3.2 Control Identification

Each control has an ID property that can be uniquely identify itself among its sibling controls.
In addition, each control has a UniqueID and a ClientID which can be used to globally identify

8

2.3. Controls

the control in the tree that the control resides in. UniqueID and ClientID are very similar. The
former is used by the framework to determine the location of the corresponding control in the tree,
while the latter is mainly used on the client side as HTML tag IDs. In general, you should not
rely on the explicit format of UniqueID or ClientID.

2.3.3 Naming Containers

Each control has a naming container which is a control creating a unique namespace for differ-
entiating between controls with the same ID. For example, a TRepeater control creates multiple
items each having child controls with the same IDs. To differentiate these child controls, each
item serves as a naming container. Therefore, a child control may be uniquely identified using its
naming container’s ID together with its own ID. As you may already have understood, UniqueID
and ClientID rely on the naming containers.

A control can serve as a naming container if it implements the INamingContainer interface.

2.3.4 ViewState and ControlState

HTTP is a stateless protocol, meaning it does not provide functionality to support continuing
interaction between a user and a server. Each request is considered as discrete and independent
of each other. A Web application, however, often needs to know what a user has done in previous
requests. People thus introduce sessions to help remember such state information.

PRADO borrows the viewstate and controlstate concept from Microsoft ASP.NET to provides
additional stateful programming mechanism. A value storing in viewstate or controlstate may be
available to the next requests if the new requests are form submissions (called postback) to the
same page by the same user. The difference between viewstate and controlstate is that the former
can be disabled while the latter cannot.

Viewstate and controlstate are implemented in TControl. They are commonly used to define
various properties of controls. To save and retrieve values from viewstate or controlstate, use
following methods,

$this->getViewState(’Name’,$defaultValue);

$this->setViewState(’Name’,$value,$defaultValue);

$this->getControlState(’Name’,$defaultValue);

9

Chapter 2. Fundamentals

$this->setControlState(’Name’,$value,$defaultValue);

where $this refers to the control instance, Name refers to a key identifying the persistent value,
$defaultValue is optional. When retrieving values from viewstate or controlstate, if the corre-
sponding key does not exist, the default value will be returned.

2.4 Pages

Pages are top-most controls that have no parent. The presentation of pages are directly displayed
to end-users. Users access pages by sending page service requests.

Each page must have a template file. The file name suffix must be .page. The file name (without
suffix) is the page name. PRADO will try to locate a page class file under the directory containing
the page template file. Such a page class file must have the same file name (suffixed with .php) as
the template file. If the class file is not found, the page will take class TPage.

2.4.1 PostBack

A form submission is called postback if the submission is made to the page containing the form.
Postback can be considered an event happened on the client side, raised by the user. PRADO
will try to identify which control on the server side is responsible for a postback event. If one is
determined, for example, a TButton, we call it the postback event sender which will translate the
postback event into some specific server-side event (e.g. Click and Command events for TButton).

2.4.2 Page Lifecycles

Understanding the page lifecycles is crucial to grasp PRADO programming. Page lifecycles refer
to the state transitions of a page when serving this page to end-users. They can be depicted in the
following statechart,

10

2.5. Modules

2.5 Modules

A module is an instance of a class implementing the IModule interface. A module is commonly
designed to provide specific functionality that may be plugged into a PRADO application and
shared by all components in the application.

PRADO uses configurations to specify whether to load a module, load what kind of modules,
and how to initialize the loaded modules. Developers may replace the core modules with their
own implementations via application configuration, or they may write new modules to provide
additional functionalities. For example, a module may be developed to provide common database
logic for one or several pages. For more details, please see the configurations.

There are three core modules that are loaded by default whenever an application runs. They are
request module, response module, and error handler module. In addition, session module is loaded
when it is used in the application. PRADO provides default implementation for all these modules.
Custom modules may be configured or developed to override or supplement these core modules.

2.5.1 Request Module

Request module represents provides storage and access scheme for user request sent via HTTP. User
request data comes from several sources, including URL, post data, session data, cookie data, etc.
These data can all be accessed via the request module. By default, PRADO uses THttpRequest

as request module. The request module can be accessed via the Request property of application
and controls.

2.5.2 Response Module

Response module implements the mechanism for sending output to client users. Response module
may be configured to control how output are cached on the client side. It may also be used to send
cookies back to the client side. By default, PRADO uses THttpResponse as response module. The
response module can be accessed via the Response property of application and controls.

11

Chapter 2. Fundamentals

2.5.3 Session Module

Session module encapsulates the functionalities related with user session handling. Session module
is automatically loaded when an application uses session. By default, PRADO uses THttpSession
as session module, which is a simple wrapper of the session functions provided by PHP. The session
module can be accessed via the Session property of application and controls.

2.5.4 Error Handler Module

Error handler module is used to capture and process all error conditions in an application. PRADO
uses TErrorHandler as error handler module. It captures all PHP warnings, notices and exceptions,
and displays in an appropriate form to end-users. The error handler module can be accessed via
the ErrorHandler property of the application instance.

2.5.5 Custom Modules

PRADO is released with a few more modules besides the core ones. They include caching modules
(TSqliteCache and TMemCache), user management module (TUserManager), authentication and
authorization module (TAuthManager), etc.

When TPageService is requested, it also loads modules specific for page service, including asset
manager (TAssetManager), template manager (TTemplateManager), theme/skin manager (TThemeManager),
and page state persister (TPageStatePersister).

Custom modules and core modules are all configurable via configurations.

2.6 Services

A service is an instance of a class implementing the IService interface. Each kind of service
processes a specific type of user requests. For example, the page service responds to users’ requests
for PRADO pages.

A service is uniquely identified by its ID property. By default when THttpRequest is used as the
request module, GET variable names are used to identify which service a user is requesting. If a
GET variable name is equal to some service ID, the request is considered for that service, and the

12

2.6. Services

value of the GET variable is passed as the service parameter. For page service, the name of the GET
variable must be page. For example, the following URL requests for the Fundamentals.Services

page,

http://hostname/index.php?page=Fundamentals.Services

Developers may implement additional services for their applications. To make a service available,
configure it in application configurations.

2.6.1 Page Service

PRADO implements TPageService to process users’ page requests. Pages are stored under a
directory specified by the BasePath property of the page service. The property defaults to pages

directory under the application base path. You may change this default by configuring the service
in the application configuration.

Pages may be organized into subdirectories under the BasePath. In each directory, there may be a
page configuration file named config.xml, which contains configurations effective only when a page
under that directory or a sub-directory is requested. For more details, see the page configuration
section.

Service parameter for the page service refers to the page being requested. A parameter like
Fundamentals.Services refers to the Services page under the <BasePath>/Fundamentals di-
rectory. If such a parameter is absent in a request, a default page named Home is assumed. Using
THttpRequest as the request module (default), the following URLs will request for Home, About
and Register pages, respectively,

http://hostname/index.php

http://hostname/index.php?page=About

http://hostname/index.php?page=Users.Register

where the first example takes advantage of the fact that the page service is the default service and
Home is the default page.

13

Chapter 2. Fundamentals

2.7 Applications

An application is an instance of TApplication or its derived class. It manages modules that
provide different functionalities and are loaded when needed. It provides services to end-users. It
is the central place to store various parameters used in an application. In a PRADO application,
the application instance is the only object that is globally accessible via Prado::getApplication()
function call.

Applications are configured via application configurations. They are usually created in entry scripts
like the following,

require_once(’/path/to/prado.php’);

$application = new TApplication;

$application->run();

where the method run() starts the application to handle user requests.

2.7.1 Directory Organization

A minimal PRADO application contains two files: an entry file and a page template file. They
must be organized as follows,

• wwwroot - Web document root or sub-directory.

• index.php - entry script of the PRADO application.

• assets - directory storing published private files. See assets section.

• protected - application base path storing application data and private script files. This
directory should be configured inaccessible to Web-inaccessible, or it may be located outside
of Web directories.

• runtime - application runtime storage path. This directory is used by PRADO to store
application runtime information, such as application state, cached data, etc.

• pages - base path storing all PRADO pages. See services section.

• Home.page - default page returned when users do not explicitly specify the page requested.
This is a page template file. The file name without suffix is the page name. The page class
is TPage. If there is also a class file Home.php, the page class becomes Home.

14

2.8. Sample: Hello World

A product PRADO application usually needs more files. It may include an application configura-
tion file named application.xml under the application base path protected. The pages may be
organized in directories, some of which may contain page configuration files named config.xml.
Fore more details, please see configurations section.

2.7.2 Application Deployment

Deploying a PRADO application mainly involves copying directories. For example, to deploy the
above minimal application to another server, follow the following steps,

1. Copy the content under wwwroot to a Web-accessible directory on the new server.

2. Modify the entry script file index.php so that it includes correctly the prado.php file.

3. Remove all content under assets and runtime directories and make sure both directories
are writable by the Web server process.

2.7.3 Application Lifecycles

Like page lifecycles, an application also has lifecycles. Application modules can register for the
lifecycle events. When the application reaches a particular lifecycle and raises the corresponding
event, the registered module methods are invoked automatically. Modules included in the PRADO
release, such as TAuthManager, are using this way to accomplish their goals.

The application lifecycles can be depicted as follows,

2.8 Sample: Hello World

”Hello World” perhaps is the simplest interactive PRADO application that you can build. It
displays to end-users a page with a submit button whose caption is Click Me. When the user clicks
on the button, the button changes the caption to Hello World.

There are many approaches that can achieve the above goal. One can submit the page to the
server, examine the POST variable, and generate a new page with the button caption updated.
Or one can simply use JavaScript to update the button caption upon its onclick event.

15

Chapter 2. Fundamentals

PRADO promotes component-based and event-driven Web programming. The button is repre-
sented by a TButton object. It encapsulates the button caption as the Text property and asso-
ciates the user button click action with a server-side Click event. Therefore, the ”Hello World”
task can be handled intuitively and easily. One simply needs to attach a function to the button’s
Click event. Within the function, the button’s Text property is modified as ”Hello World”. The
following diagram shows the above sequence,

The code that a developer needs to write is merely the following event handler function, where
$sender refers to the button object.

public function buttonClicked($sender,$param)

{

$sender->Text = "Hello World";

}

Try, Fundamentals.Samples.HelloWorld.Home

2.9 Sample: Hangman Game

Having seen the simple ”Hello World” application, we now build a more complex application called
”Hangman Game”. In this game, the player is asked to guess a word, a letter at a time. If he
guesses a letter right, the letter will be shown in the word. The player can continue to guess as
long as the number of his misses is within a prespecified bound. The player wins the game if he
finds out the word within the miss bound, or he loses.

To facilitate the building of this game, we show the state transition diagram of the gaming process
in the following,

To be continued...

Try, Fundamentals.Samples.Hangman.Home

16

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Fundamentals.Samples.HelloWorld.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Fundamentals.Samples.Hangman.Home

2.9. Sample: Hangman Game

17

Chapter 2. Fundamentals

18

2.9. Sample: Hangman Game

19

Chapter 2. Fundamentals

20

Chapter 3

Configurations

3.1 Configuration Overview

PRADO uses configurations to glue together components into pages and applications. There are
application configurations, page configurations, and templates.

Application and page configurations are optional if default values are used. Templates are mainly
used by pages and template controls. They are optional, too.

3.2 Templates: Part I

Templates are used to specify the presentational layout of controls. A template can contain static
text, components, or controls that contribute to the ultimate presentation of the associated con-
trol. By default, an instance of TTemplateControl or its subclass may automatically load and
instantiate a template from a file whose name is the same as the control class name. For page
templates, the file name suffix must be .page; for other regular template controls, the suffix is
.tpl.

The template format is like HTML, with a few PRADO-specifc tags, including component tags,
template control tags, comment tags, dynamic content tags, and dynamic property tags. .

21

Chapter 3. Configurations

3.2.1 Component Tags

A component tag specifies a component as part of the body content of the template control. If the
component is a control, it usually will become a child or grand child of the template control, and
its rendering result will be inserted at the place where it is appearing in the template.

The format of a component tag is as follows,

<com:ComponentType PropertyName="PropertyValue" ... EventName="EventHandler" ...>

body content

</com:ComponentType>

ComponentType can be either the class name or the dotted type name (e.g. System.Web.UI.TControl)
of the component. PropertyName and EventName are both case-insensitive. PropertyName can be
a property or subproperty name (e.g. Font.Name). Note, PropertyValue will be HTML-decoded
when assigned to the corresponding property. Content enclosed between the opening and closing
component tag are normally treated the body of the component.

It is required that component tags nest properly with each other and an opening component tag
be paired with a closing tag, similar to that in XML.

The following template shows a component tag specifying the Text property and OnClick event
of a button control,

<com:TButton Text="Register" OnClick="registerUser" />

Keep it in mind that property names and event names are all case-insensitive, while component
type names are case-sensitive. Event names always begin with On.

To deal conveniently with properties taking take big trunk of initial data, the following property
initialization tag is introduced,

<prop:PropertyName>

PropertyValue

</prop:PropertyName>

It is equivalent to ...PropertyName="PropertyValue"... in every aspect. Property initialization
tags must be directly enclosed between the corresponding opening and closing component tag.

22

3.2. Templates: Part I

Component IDs

When specified in templates, component ID property has special meaning in addition to its normal
property definition. A component tag specified with an ID value in template will register the
corresponding component to the template owner control. The component can thus be directly
accessed from the template control with its ID value. For example, in Home page’s template, the
following component tag

<com:TTextBox ID="TextBox" Text="First Name" />

makes it possible to get the textbox object in code using $page->TextBox.

3.2.2 Template Control Tags

A template control tag is used to configure the initial property values of the control owning the
template. Its format is as follows,

<%@ PropertyName="PropertyValue" ... %>

Like in component tags, PropertyName is case-insensitive and can be a property or subproperty
name.

Initial values specified via the template control tag are assigned to the corresponding properties
when the template control is being constructed. Therefore, you may override these property values
in a later stage, such as the Init stage of the control.

Template control tag is optional in a template. Each template can contain at most one template
control tag. You can place the template control tag anywhere in the template. It is recommended
that you place it at the beginning of the template for better visibility.

3.2.3 Comment Tags

Comment tags are used to put comments in the template or the ultimate rendering result. There
are two types of comment tags. One is like that in HTML and will be displayed to the end-users.
The other only appear in a template and will be stripped out when the template is instantiated
and displayed to the end-users. The format of these two comment tags is as follows,

23

Chapter 3. Configurations

<!--

Comments VISIBLE to end-users

-->

<!

Comments INVISIBLE to end-users

!>

3.3 Templates: Part II

3.3.1 Dynamic Content Tags

Dynamic content tags are introduced as shortcuts to some commonly used component tags. These
tags are mainly used to render contents resulted from evaluating some PHP expressions or state-
ments. They include expression tags, statement tags, databind tags, parameter tags, asset tags
and localization tags.

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template control is
being rendered. The expression evaluation result is inserted at the place where the tag resides in
the template. Its format is as follows,

<%= PhpExpression %>

Inernally, an expression tag is represented by a TExpression control. Therefore, in the expression
$this refers to the TExpression control. For example, the following expression tag will display
the current page title at the place,

<%= $this->Page->Title %>

24

3.3. Templates: Part II

Statement Tags

Statement tags are similar to expression tags, except that statement tags contain PHP statements
rather than expressions. The output of the PHP statements (using for example echo or print

in PHP) are displayed at the place where the statement tag resides in the template. Inernally, a
statement tag is represented by a TStatements control. Therefore, in the statements $this refers
to the TStatements control. The format of statement tags is as follows,

<%%

PHP Statements

%>

The following example displays the current time in Dutch at the place,

<%%

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

%>

Databind Tags

Databind tags are similar to expression tags, except that the expressions are evaluated only when a
dataBind() call is invoked on the controls representing the databind tags. Internally, a TLiteral

control is used to represent a databind tag and $this in the expression would refer to the control.
The format of databind tags is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to insert application parameters at the place where they appear in the
template. The format of parameter tags is as follows,

<%$ ParameterName %>

25

Chapter 3. Configurations

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and display the corresponding the URLs. For example,
if you have an image file that is not Web-accessible and you want to make it visible to end-users,
you can use asset tags to publish this file and show the URL to end-users so that they can fetch
the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence.

26

3.4. Templates: Part III

3.4 Templates: Part III

3.4.1 Dynamic Property Tags

Dynamic property tags are very similar to dynamic content tags, except that they are applied to
component properties. The purpose of dynamic property tags is to allow more versatile component
property configuration. Note, you are not required to use dynamic property tags because what
can be done using dynamic property tags can also be done in PHP code. However, using dynamic
property tags bring you much more convenience at accomplishing the same tasks. The basic usage
of dynamic property tags is as follows,

<com:ComponentType PropertyName=DynamicPropertyTag ...>

body content

</com:ComponentType>

where you may enclose DynamicPropertyTag within single or double quotes for better readability.

Like dynamic content tags, we have expression tags, databind tags, parameter tags, asset tags and
localization tags. (Note, there is no statement tag here.)

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template is being
instantiated. The expression evaluation result is assigned to the corresponding component property.
The format of expression tags is as follows,

<%= PhpExpression %>

In the expression, $this refers to the component specified by the component tag. The following
example specifies a TLabel control whose Text property is initialized as the current page title when
the TLabel control is being constructed,

<com:TLabel Text=<%= $this->Page->Title %> />

Note, unlike dynamic content tags, the expressions tags for component properties are evaluated
when the components are being constructed, while for the dynamic content tags, the expressions
are evaluated when the controls are being rendered.

27

Chapter 3. Configurations

Databind Tags

Databind tags are similar to expression tags, except that they can only be used with control
properties and the expressions are evaluated only when a dataBind() call is invoked on the controls
represented by the component tags. In the expression, $this refers to the control itself. Databind
tags do not apply to all components. They can only be used for controls.

The format of databind tags is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to assign application parameter values to the corresponding component
properties. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and assign the corresponding the URLs to the component
properties. For example, if you have an image file that is not Web-accessible and you want to make
it visible to end-users, you can use asset tags to publish this file and show the URL to end-users
so that they can fetch the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

28

3.5. Application Configurations

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]>

where string will be translated to different languages according to the end-user’s language pref-
erence.

3.5 Application Configurations

Application configurations are used to specify the global behavior of an application. They include
specification of path aliases, namespace usages, module and service configurations, and parameters.

Configuration for an application is stored in an XML file named application.xml, which should
be located under the application base path. Its format is shown in the following,

<application PropertyName="PropertyValue" ...>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<services>

<service id="ServiceID" class="ServiceClass" PropertyName="PropertyValue" ... />

</services>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

</application>

29

Chapter 3. Configurations

• The outermost element <application> corresponds to the TApplication instance. The
PropertyName="PropertyValue" pairs specify the initial values for the properties of TApplication.

• The <paths> element contains the definition of path aliases and the PHP inclusion paths for
the application. Each path alias is specified via an <alias> whose path attribute takes an
absolute path or a path relative to the directory containing the application configuration file.
The <using> element specifies a particular path (in terms of namespace) to be appended
to the PHP include paths when the application runs. PRADO defines two default aliases:
System and Application. The former refers to the PRADO framework root directory, and
the latter refers to the directory containing the application configuration file.

• The <modules> element contains the configurations for a list of modules. Each module is
specified by a <module> element. Each module is uniquely identified by the id attribute and
is of type class. The PropertyName="PropertyValue" pairs specify the initial values for
the properties of the module.

• The <services> element is similar to the <modules> element. It mainly specifies the services
provided by the application.

• The <parameters> element contains a list of application-level parameters that are accessible
from anywhere in the application. You may specify component-typed parameters like spec-
ifying modules, or you may specify string-typed parameters which take a simpler format as
follows,

<parameter id="ParameterID" value="ParameterValue" />

Note, if the value attribute is not specified, the whole parameter XML node (of type
TXmlElement) will be returned as the parameter value.

By default without explicit configuration, a PRADO application when running will load a few core
modules, such as THttpRequest, THttpResponse, etc. It will also provide the TPageService as a
default service. Configuration and usage of these modules and services are covered in individual
sections of this tutorial. Note, if your application takes default settings for these modules and
service, you do not need to provide an application configuration. However, if these modules or
services are not sufficient, or you want to change their behavior by configuring their property
values, you will need an application configuration.

30

3.6. Page Configurations

3.6 Page Configurations

Page configurations are mainly used by TPageService to modify or append the application con-
figuration. As the name indicates, a page configuration is associated with a directory storing some
page files. It is stored as an XML file named config.xml.

When a user requests a page stored under <BasePath>/dir1/dir2, the TPageService will try
to parse and load config.xml files under <BasePath>/dir1 and <BasePath>/dir1/dir2. Paths,
modules, and parameters specified in these configuration files will be appended or merged into the
existing application configuration.

The format of a page configuration file is as follows,

<configuration>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<authorization>

<allow pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="get" />

<deny pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="post" />

</authorization>

<pages PropertyName="PropertyValue" ...>

<page id="PageID" PropertyName="PropertyValue" ... />

</pages>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

</configuration>

The <paths>, <modules> and <parameters> are similar to those in an application configuration.
The <authorization> specifies the authorization rules that apply to the current page directory
and all its subdirectories. It will be explained in more detail in future sections. The <pages>

element specifies the initial values for the properties of pages. Each <page> element specifies the

31

Chapter 3. Configurations

initial property values for a particular page identified by the id attribute. Initial property values
given in the <pages> element apply to all pages in the current directory and all its subdirectories.

32

Chapter 4

Controls

4.1 Controls Overview

Control are components defined in addition with user interface. Control classes constitute a major
part of the PRADO framework. Nearly every generic HTML element can find its representation in
terms of a PRADO control. Mastering these controls becomes extremely important for developers
to compose effectively and efficiently applications using PRADO.

To be continued...

4.2 Simple HTML Controls

4.2.1 TLabel

TLabel displays a piece of text on a Web page. The text to be displayed is set via its Text property.
If Text is empty, content enclosed within the TLabel component tag will be displayed. TLabel

may also be used as a form label associated with some control on the form. Since Text is not
HTML-encoded when being rendered, make sure it does not contain dangerous characters that
you want to avoid.

Try, Controls.Samples.TLabel.Home

33

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TLabel.Home

Chapter 4. Controls

4.2.2 THyperLink

THyperLink displays a hyperlink on a page. The hyperlink URL is specified via the NavigateUrl

property, and link text is via the Text property. The link target is specified via the Target

property. It is also possible to display an image by setting the ImageUrl property. In this case,
Text is displayed as the alternate text of the image. If both ImageUrl and Text are empty, the
content enclosed within the control tag will be rendered.

Try, Controls.Samples.THyperLink.Home

4.2.3 TImage

TImage displays an image on a page. The image is specified via the ImageUrl property which takes
a relative or absolute URL to the image file. The alignment of the image displayed is set by the
ImageAlign property. To set alternate text or long description of the image, use AlternateText

or DescriptionUrl, respectively.

Try, Controls.Samples.TImage.Home

4.2.4 TPanel

TPanel acts as a presentational container for other control. It displays a ¡div¿ element on a
page. The property Wrap specifies whether the panel’s body content should wrap or not, while
HorizontalAlign governs how the content is aligned horizontally and Direction indicates the
content direction (left to right or right to left). You can set BackImageUrl to give a background
image to the panel, and you can ste GroupingText so that the panel is displayed as a field set with
a legend text. Finally, you can specify a default button to be fired when users press ’return’ key
within the panel by setting the DefaultButton property.

Try, Controls.Samples.TPanel.Home

4.2.5 TTable

TTable displays an HTML table on a page. It is used together with TTableRow and TTableCell

to allow programmatically manipulating HTML tables. The rows of the table is stored in Rows

property. You may set the table cellspacing and cellpadding via the CellSpacing and CellPadding

34

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.THyperLink.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TImage.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TPanel.Home

4.2. Simple HTML Controls

properties, respectively. The table caption can be specified via Caption whose alignment is specified
by CaptionAlign. The GridLines property indicates how the table should display its borders,
and the BackImageUrl allows the table to have a background image.

Try, Controls.Samples.TTable.Home

4.2.6 TTextBox

TTextBox displays a text box on a Web page. The content in the text box is determined by the
Text property. You can create a SingleLine, a MultiLine, or a Password text box by setting the
TextMode property. The Rows and Columns properties specify their dimensions. If AutoPostBack
is true, changing the content in the text box and then moving the focus out of it will cause postback
action.

Try, Controls.Samples.TTextBox.Home

4.2.7 TButton

TButton creates a click button on a Web page. The button’s caption is specified by Text property.
A button is used to submit data to a page. TButton raises two server-side events, Click and
Command, when it is clicked on the client-side. The difference between Click and Command events is
that the latter event is bubbled up to the button’s ancestor controls. A Command event handler can
use CommandName and CommandParameter associated with the event to perform specific actions.

Clicking on button can trigger form validation, if CausesValidationis true. And the validation
may be restricted within a certain group of validator controls according to ValidationGroup.

Try, Controls.Samples.TButton.Home

4.2.8 TLinkButton

TLinkButton is similar to TButton in every aspect except that TLinkButton is displayed as a
hyperlink. The link text is determined by its Text property. If the Text property is empty, then
the body content of the button is displayed (therefore, you can enclose a ¡img¿ tag within the
button body and get an image button.

35

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TTable.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TTextBox.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TButton.Home

Chapter 4. Controls

Try, Controls.Samples.TLinkButton.Home

4.2.9 TImageButton

TImageButton is also similar to TButton, except that TImageButton displays the button as an
image. The image is specified via ImageUrl, and the alternate text is specified by Text. In
addition, it is possible to obtain the coordinate of the point where the image is clicked. The
coordinate information is contained in the event parameter of the Click event (not Command).

Try, Controls.Samples.TImageButton.Home

4.2.10 TCheckBox

TCheckBox displays a check box on a Web page. A caption can be specified via Text and displayed
beside the check box. It can appear either on the right or left of the check box, which is determined
by TextAlign. You may further specify attributes applied to the text by using LabelAttributes.

To determine whether the check box is checked, test the Checked property. A CheckedChanged

event is raised if the state of Checked is changed between posts to the server. If AutoPostBack is
true, changing the check box state will cause postback action. And if CausesValidation is also
true, upon postback validation will be performed for validators within the specified ValidationGroup.

Try, Controls.Samples.TCheckBox.Home

4.2.11 TRadioButton

TRadioButton is similar to TCheckBox in every aspect, except that TRadioButton displays a radio
button on a Web page. The radio button can belong to a specific group specified by GroupName

such that only one radio button within that group can be selected at most.

Try, Controls.Samples.TRadioButton.Home

36

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TLinkButton.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TImageButton.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TCheckBox.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TRadioButton.Home

4.3. List Controls

4.3 List Controls

List controls covered in this section all inherit directly or indirectly from TListControl. Therefore,
they share the same set of commonly used properties, including,

• Items - list of items in the control. The items are of type TListItem. The item list can be
populated via databinding or specified in templates like the following:

<com:TListBox>

<com:TListItem Text="text 1" Value="value 1" />

<com:TListItem Text="text 2" Value="value 2" Selected="true" />

<com:TListItem Text="text 3" Value="value 3" />

</com:TListBox>

• SelectedIndex - the zero-based index of the first selected item in the item list.

• SelectedIndices - the indices of all selected items.

• SelectedItem - the first selected item in the item list.

• SelectedValue - the value of the first selected item in the item list.

• AutoPostBack - whether changing the selection of the control should trigger postback.

• CausesValidation - whether validation should be performed when postback is triggered by
the list control.

Since TListControl inherits from TDataBoundControl, these list controls also share a common
operation known as databinding. The Items can be populated from preexisting data specified by
DataSource or DataSourceID. A function call to dataBind() will cause the data population. For
list controls, data can be specified in three kinds of format:

• integer-indexed array, TList or traversable : each array element value will be used as the
value and text for a list item. For example

$listbox->DataSource=array(’item 1’,’item 2’,’item 3’);

$listbox->dataBind();

• associative array, TMap or traversable : array keys will be used as list item values, and array
values will be used as list item texts. For example

37

Chapter 4. Controls

$listbox->DataSource=array(

’key 1’=>’item 1’,

’key 2’=>’item 2’,

’key 3’=>’item 3’);

$listbox->dataBind();

• tabular (two-dimensional) data : each row of data populates a single list item. The list item
value is specified by the data member indexed with DataValueField, and the list item text
by DataTextField. For example,

$listbox->DataTextField=’name’;

$listbox->DataValueField=’id’;

$listbox->DataSource=array(

array(’id’=>’001’,’name’=>’John’,’age’=>31),

array(’id’=>’002’,’name’=>’Mary’,’age’=>30),

array(’id’=>’003’,’name’=>’Cary’,’age’=>20));

$listbox->dataBind();

4.3.1 TListBox

TListBox displays a list box that allows single or multiple selection. Set the property SelectionMode

as Single to make a single selection list box, and Multiple a multiple selection list box. The num-
ber of rows displayed in the box is specified via the Rows property value.

Try, Controls.Samples.TListBox.Home

4.3.2 TDropDownList

TDropDownList displays a dropdown list box that allows users to select a single option from a few
prespecified ones.

Try, Controls.Samples.TDropDownList.Home

38

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TListBox.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TDropDownList.Home

4.3. List Controls

4.3.3 TCheckBoxList

TCheckBoxList displays a list of checkboxes on a Web page. The alignment of the text besides
each checkbox can be specified TextAlign. The layout of the checkboxes can be controlled by the
following properties:

• RepeatLayout - can be either Table or Flow. A Table uses HTML table cells to organize
the checkboxes, while a Flow uses HTML span tags and breaks for the organization. With
Table layout, you can set CellPadding and CellSpacing.

• RepeatColumns - how many columns the checkboxes should be displayed in.

• RepeatDirection - how to traverse the checkboxes, in a horizontal way or a vertical way
(because the checkboxes are displayed in a matrix-like layout).

Try, Controls.Samples.TCheckBoxList.Home

4.3.4 TRadioButtonList

TRadioButtonList is similar to TCheckBoxList in every aspect except that each TRadioButtonList

displays a group of radiobuttons. Only one of the radiobuttions can be selected (TCheckBoxList
allows multiple selections.)

Try, Controls.Samples.TRadioButtonList.Home

4.3.5 TBulletList

TBulletedList displays items in a bullet format on a Web page. The style of the bullets can be
specified by BulletStyle. When the style is CustomImage, the bullets are displayed as images,
which is specified by BulletImageUrl.

TBulletedList displays the item texts in three different modes,

• Text - the item texts are displayed as static texts;

• HyperLink - each item is displayed as a hyperlink whose URL is given by the item value,
and Target property can be used to specify the target browser window;

39

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TCheckBoxList.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TRadioButtonList.Home

Chapter 4. Controls

• LinkButton - each item is displayed as a link button which posts back to the page if a user
clicks on that, and the event OnClick will be raised under such a circumstance.

Try, Controls.Samples.TBulletedList.Home

4.4 Validation Controls

Validation is performed when a postback control, such as a TButton, a TLinkButton or a TTextBox

(under AutoPostBack mode) is submitting the page and its CausesValidation property is true.

Validator controls always validate the associated input control on the serve side. In addition, if
EnableClientScript is true, validation will also be performed on the client-side using javascript.
Client-side validation will validate user input before it is sent to the server. The form data will
not be submitted if any error is detected. This avoids the round-trip of information necessary for
server-side validation.

Every validator component has the following properties, defined in the TBaseValidator class.

ControlToValidate The ID of the component for this validator. This property must be set to
the ID path of an input component. The ID path is the dot-connected IDs of the components
reaching from the validator’s parent component to the target component.

ErrorMessage The text for the error message when the input component failed to validate.

ValidationGroup If the control causing the validation also sets its ValidationGroup property,
only those validators having the same ValidationGroup value will do input validation.

Display The display behavior of the error message in a validation component. The allowed values
are: None, Static and Dynamic. The default is Static.

• None – the validator component and the error message will not be displayed.

• Dynamic – CSS for the error is constructed in such a way that space for the error message
on the page is NOT reserved. When the user hits the ”submit” button, applicable error
messages will show up shifting the layout of your page around (usually down).

• Static – CSS for the error is constructed in such a way that space for the error message
on the page is always reserved. When the user hits the ”submit” button, applicable error
messages will just show up, not altering the layout of your page.

EnableClientScript Indicating whether client-side validation is enabled. Default is true.

40

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TBulletedList.Home

4.4. Validation Controls

4.4.1 TRequiredFieldValidator

This is the simplest validator, ensuring that the input field has some sort of value. To ensure that
all of our input fields are required, add a TRequiredFieldValidator component for each of the
input fields. The TRequiredFieldValidator also has the following property.

InitialValue The associated input component fails validation if its value does not change from
the InitialValue upon losing focus.

Try, Controls.Samples.TRequiredFieldValidator.Home

4.4.2 TRegularExpressionValidator

The TRegularExpressionValidator has the following property in addition to the parent TBaseValidator
properties.

RegularExpression The regular expression that determines the pattern used to validate a field.
Some commonly used regular expressions include:

• At least 6 characters: [\w]{6,}

• Internal URL: http://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?

• Japanese Phone Number: (0\d{1,4}-|\(0\d{1,4}\) ?)?\d{1,4}-\d{4}

• Japanese Postal Code: \d{3}(-(\d{4}|\d{2}))?

• P.R.C. Phone Number: (\(\d{3}\)|\d{3}-)?\d{8}

• P.R.C. Postal Code: \d{6}

• P.R.C. Social Security Number: \d{18}|\d{15}

• U.S. Phone Number: ((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

• U.S. ZIP Code: \d{5}(-\d{4})?

• U.S. Social Security Number: \d{3}-\d{2}-\d{4}

More regular expression patterns can be found on the Internet, e.g. http://regexlib.com/.

Try, Controls.Samples.TRegularExpressionValidator.Home

41

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TRequiredFieldValidator.Home
http://regexlib.com/
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TRegularExpressionValidator.Home

Chapter 4. Controls

4.4.3 TEmailAddressValidator

TEmailAddressValidator validates whether the value of an associated input component is a valid
email address. It will check MX record if checkdnsrr() is available in the installed PHP.

Try, Controls.Samples.TEmailAddressValidator.Home

4.4.4 TCompareValidator

The validator TCompareValidator is used to compare two input fields, the comparison can be
made in many ways. The following are the properties of the TCompareValidator in addition to
the parent TBaseValidator.

ControlToCompare The input component to compare with the input control being validated.

ValueToCompare A constant value to compare with the value entered by the user into the input
component being validated.

ValueType The data type (Integer, Double, Currency, Date, String) that the values being
compared are converted to before the comparison is made.

Operator The comparison operation to perform (Equal, NotEqual, GreaterThan, GreaterThanEqual,
LessThan, LessThanEqual, DataTypeCheck).

DateFormat The date format to use during comparision.

To specify the input component to validate, set the ControlToValidate property to the ID of the
input component. To compare the associated input component with another input component, set
the ControlToCompare property to the ID of the component to compare with.

To compare the associated input component with a constant value, specify the constant value to
compare with by setting the ValueToCompare property.

The ValueType property is used to specify the data type of both comparison values. Both values
are automatically converted to this data type before the comparison operation is performed. The
following value types are supported.

Integer A 32-bit signed integer data type.

42

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TEmailAddressValidator.Home

4.5. TDataList

Double A double-precision floating point number data type.

Currency A decimal data type that can contain currency symbols.

Date A date data type, the date format depends on the DateFormat property.

String A string data type.

Use the Operator property to specify the type of comparison to perform. If you set the Operator

property to DataTypeCheck, the TCompareValidator component will ignore the ControlToCompare
and ValueToCompare properties and simply indicates whether the value entered into the input
component can be converted to the data type specified by the ValueType property.

Note that if the input control is empty, no validation functions are called and validation succeeds.
Use a RequiredFieldValidator control to require the user to enter data into the input control.

Try, Controls.Samples.TCompareValidator.Home

4.4.5 TCustomValidator

Try, Controls.Samples.TCustomValidator.Home

4.4.6 TValidationSummary

Try, Controls.Samples.TValidationSummary.Home

4.5 TDataList

TBC

Try, Controls.Samples.TDataList.Sample1

4.6 TDataGrid

TBC

43

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TCompareValidator.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TCustomValidator.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TValidationSummary.Home
http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TDataList.Sample1

Chapter 4. Controls

Try, Controls.Samples.TDataGrid.Sample1

44

http://www.pradosoft.com/prado3/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample1

Chapter 5

Security

5.1 Authentication and Authorization

Authentication is a process of verifying whether someone is who he claims he is. It usually involves
a username and a password, but may include any other methods of demonstrating identity, such
as a smart card, fingerprints, etc.

Authorization is finding out if the person, once identified, is permitted to manipulate specific
resources. This is usually determined by finding out if that person is of a particular role that has
access to the resources.

5.1.1 How PRADO Auth Framework Works

PRADO provides an extensible authentication/authorization framework. As described in applica-
tion lifecycles, TApplication reserves several lifecycles for modules responsible for authentication
and authorization. PRADO provides the TAuthManager module for such purposes. Developers
can plug in their own auth modules easily. TAuthManager is designed to be used together with
TUserManager module, which implements a read-only user database.

When a page request occurs, TAuthManager will try to restore user information from session. If
no user information is found, the user is considered as an anonymous or guest user. To facilitate
user identity verification, TAuthManager provides two commonly used methods: login() and

45

Chapter 5. Security

logout(). A user is logged in (verified) if his username and password entries match a record in the
user database managed by TUserManager. A user is logged out if his user information is cleared
from session and he needs to re-login if he makes new page requests.

During Authorization application lifecycle, which occurs after Authentication lifecycle, TAuthManager
will verify if the current user has access to the requested page according to a set of authorization
rules. The authorization is role-based, i.e., a user has access to a page if 1) the page explicitly
states that the user has access; 2) or the user is of a particular role that has access to the page.
If the user does not have access to the page, TAuthManager will redirect user browser to the login
page which is specified by LoginPage property.

5.1.2 Using PRADO Auth Framework

To enable PRADO auth framework, add the TAuthManager module and TUserManager module to
application configuration,

<service id="page" class="TPageService">

<modules>

<module id="auth" class="System.Security.TAuthManager"

UserManager="users" LoginPage="UserLogin" />

<module id="users" class="System.Security.TUserManager"

PasswordMode="Clear">

<user name="demo" password="demo" />

<user name="admin" password="admin" />

</module>

</modules>

</service>

In the above, the UserManager property of TAuthManager is set to the users module which
is TUserManager. Developers may replace it with a different user management module that is
derived from TUserManager.

Authorization rules for pages are specified in page configurations as follows,

<authorization>

<allow pages="PageID1,PageID2"

46

file:Configurations.AppConfig

5.1. Authentication and Authorization

users="User1,User2"

roles="Role1" />

<deny pages="PageID1,PageID2"

users="?"

verb="post" />

</authorization>

An authorization rule can be either an allow rule or a deny rule. Each rule consists of four optional
properties:

• pages - list of comma-separated page names that this rule applies to. If empty or not set, this
rule will apply to all pages under the current directory and all its subdirectories recursively.

• users - list of comma-separated user names that this rule applies to. A character * refers
to all users including anonymous/guest user. And a character ? refers to anonymous/guest
user.

• roles - list of comma-separated user roles that this rule applies to.

• verb - page access method that this rule applies to. It can be either get or post. If empty
or not set, the rule applies to both methods.

When a page request is being processed, a list of authorization rules may be available. However,
only the first effective rule matching the current user will render the authorization result.

• Rules are ordered bottom-up, i.e., the rules contained in the configuration of current page
folder go first. Rules in configurations of parent page folders go after.

• A rule is effective if the current page is in the listed pages of the rule AND the current user
action (get or post) is in the listed actions.

• A rule matching occurs if the current user name is in the listed user names of an effective
rule OR if the user’s role is in the listed roles of that rule.

• If no rule matches, the user is authorized.

In the above example, anonymous users will be denied from posting to PageID1 and PageID2,
while User1 and User2 and all users of role Role1 can access the two pages (in both get and post

methods).

47

Chapter 5. Security

5.1.3 Using TUserManager

As aforementioned, TUserManager implements a read-only user database. The user information
are specified in either application configuration or an external XML file.

We have seen in the above example that two users are specified in the application configuration.
Complete syntax of specifying the user and role information is as follows,

<user name="demo" password="demo" roles="demo,admin" />

<role name="admin" users="demo,demo2" />

where the roles attribute in user element is optional. User roles can be specified in either the
user element or in a separate role element.

5.2 Viewstate Protection

Viewstate lies at the heart of PRADO. Viewstate represents data that can be used to restore pages
to the state that is last seen by end users before making the current request. By default, PRADO
uses hidden fields to store viewstate information.

It is extremely important to ensure that viewstate is not tampered by end users. Without protec-
tion, malicious users may inject harmful code into viewstate and unwanted instructions may be
performed when page state is being restored on server side.

To prevent viewstate from being tampered, PRADO enforces viewstate HMAC (Keyed-Hashing
for Message Authentication) check before restoring viewstate. Such a check can detect if the
viewstate has been tampered or not by end users. Should the viewstate modifies, PRADO simply
stops restoring the viewstate and returns an error message.

HMAC check requires a private key that should be secret to end users. Developers can either
manually specify a key or let PRADO automatically generate a key. Manually specified key is
useful when the application runs on a server farm. To do so, configure TPageStatePersister in
application configuration,

<service id="page" class="TPageService">

<modules>

48

5.3. Cross Site Scripting Prevention

<module id="state"

class="TPageStatePersister"

PrivateKey="my private key" />

</modules>

</service>

HMAC check does not prevent end users from reading the viewstate content. An added security
measure is to encrypt the viewstate information so that end users cannot decipher it. Work on
supporting viewstate encryption is ongoing.

Another strategy to protect viewstate is to store it on server side rather than using hidden fields.
The relevant work is also ongoing.

5.3 Cross Site Scripting Prevention

Cross site scripting (also known as XSS) occurs when a web application gathers malicious data
from a user. Often attackers will inject JavaScript, VBScript, ActiveX, HTML, or Flash into a
vulnerable application to fool other application users and gather data from them. For example,
a poorly design forum system may display user input in forum posts without any checking. An
attacker can then inject a piece of malicious JavaScript code into a post so that when other users
read this post, the JavaScript runs unexpectedly on their computers.

One of the most important measures to prevent XSS attacks is to check user input before displaying
them. One can do HTML-encoding with the user input to achieve this goal. However, in some
situations, HTML-encoding may not be preferrable because it disables all HTML tags.

PRADO incorporates the work of SafeHTML and provides developers with a useful component
called TSafeHtml. By enclosing content within a TSafeHtml component tag, the enclosed content
are ensured to be safe to end users. In addition, the commonly used TTextBox has a SafeText

property which contains user input that are ensured to be safe if displayed directly to end users.

49

http://pixel-apes.com/safehtml/

Chapter 5. Security

50

Chapter 6

Advanced Topics

6.1 Assets

Assets are resource files (such as images, sounds, videos, CSS stylesheets, javascripts, etc.) that
belong to specific component classes. Assets are meant to be provided to Web users. For better
reusability and easier deployment of the corresponding component classes, assets should reside
together with the component class files . For example, a toggle button may use two images, stored
in file down.gif and up.gif, to show different toggle states. If we require the image files be stored
under images directory under the Web server document root, it would be inconvenient for the
users of the toggle button component, because each time they develop or deploy a new application,
they would have to manually copy the image files to that specific directory. To eliminate this
requirement, a directory relative to the component class file should be used for storing the image
files. A common strategy is to use the directory containing the component class file to store the
asset files.

Because directories containing component class files are normally inaccessible by Web users, PRADO
implements an asset publishing scheme to make available the assets to Web users. An asset, after
being published, will have a URL by which Web users can retrieve the asset file.

6.1.1 Asset Publishing

PRADO provides several methods for publishing assets or directories containing assets:

51

Chapter 6. Advanced Topics

• In a template file, you can use asset tags to publish assets and obtain their URLs. Note, the
assets must be relative to the directory containing the template file.

• In PHP code, you can call TControl::getAsset($relativePath) to publish an asset and
get its URL. The asset file or directory must be relative to the directory containing the
control class file.

• If you want to publish an arbitrary asset, you need to call TAssetManager::publishFilePath($path).

BE AWARE: Be very careful with assets publishing, because it gives Web users access to files that
were previously inaccessible to them. Make sure that you do not publish files that do not want
Web users to see.

6.1.2 Customization

Asset publishing is managed by the System.Web.UI.TAssetManager module. By default, all pub-
lished asset files are stored under the [AppEntryPath]/assets directory, where AppEntryPath

refers to the directory containing the application entry script. Make sure the assets directory is
writable by the Web server process. You may change this directory to another by configuring the
BasePath and BaseUrl properties of the System.Web.UI.TAssetManager module in application
configuration,

<service id="page" class="TPageService">

<modules>

<module id="asset"

class="System.Web.UI.TAssetManager"

BasePath="images"

BaseUrl="images" />

</modules>

</service>

6.1.3 Performance

PRADO uses caching techniques to ensure the efficiency of asset publishing. Publishing an asset
essentially requires file copy operation, which is expensive. To save unnecessary file copy operations,
System.Web.UI.TAssetManager only publishes an asset when it has a newer file modification time

52

6.1. Assets

than the published file. When an application runs under the Performance mode, such timestamp
checkings are also omitted.

ADVISORY: Do not overuse asset publishing. The asset concept is mainly used to help better reuse
and redistribute component classes. Normally, you should not use asset publishing for resources
that are not bound to any components in an application. For example, you should not use asset
publishing for images that are mainly used as design elements (e.g. logos, background images,
etc.) Let Web server to directly serve these images will help improve the performance of your
application.

6.1.4 A Toggle Button Example

We now use the toggle button example to explain the usage of assets. The control uses two image
files up.gif and down.gif, which are stored under the directory containing the control class file.
When the button is in Up state, we would like to show the up.gif image. This can be done as
follows,

class ToggleButton extends TWebControl {

...

protected function addAttributesToRender($writer) {

...

if($this->getState()===’Up’) {

$url=$this->getAsset(’up.gif’);

$writer->addAttribute(’src’,$url);

}

...

}

...

}

In the above, the call $this->getAsset(’up.gif’) will publish the up.gif image file and return
a URL for the published image file. The URL is then rendered as the src attribute of the HTML
image tag.

To redistribute ToggleButton, simply pack together the class file and the image files. Users of
ToggleButton merely need to unpack the file, and they can use it right away, without worrying
about where to copy the image files to.

53

Chapter 6. Advanced Topics

6.2 Master and Content

Pages in a Web application often share common portions. For example, all pages of this tutorial
application share the same header and footer portions. If we repeatedly put header and footer in
every page source file, it will be a maintenance headache if in future we want to something in the
header or footer. To solve this problem, PRADO introduces the concept of master and content. It
is essentially a decorator pattern, with content being decorated by master.

Master and content only apply to template controls (controls extending TTemplateControl or its
child classes). A template control can have at most one master control and one or several contents
(each represented by a TContent control). Contents will be inserted into the master control at
places reserved by TContentPlaceHolder controls. And the presentation of the template control
is that of the master control with TContentPlaceHolder replaced by TContent.

For example, assume a template control has the following template:

<%@ MasterClass="MasterControl" %>

<com:TContent ID="A" >

content A

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

which uses MasterControl as its master control. The master control has the following template,

other stuff

<com:TContentPlaceHolder ID="A" />

other stuff

<com:TContentPlaceHolder ID="B" />

other stuff

<com:TContentPlaceHolder ID="C" />

other stuff

54

6.3. Themes and Skins

Then, the contents are inserted into the master control according to the following diagram, while
the resulting parent-child relationship can be shown in the next diagram. Note, the template
control discards everything in the template other than the contents, while the master control keeps
everything and replaces the content placeholders with the contents according to ID matching.

6.3 Themes and Skins

6.3.1 Introduction

Themes in Prado provide a way for developers to provide a consistent look-and-feel across an
entire web application. A theme contains a list of initial values for properties of various control
types. When applying a theme to a page, all controls on that page will receive the corresponding
initial property values from the theme. This allows themes to interact with the rich property sets

55

Chapter 6. Advanced Topics

of the various PRADO controls, meaning that themes can be used to specify a large range of
presentational properties that other theming methods (e.g. CSS) cannot. For example, themes
could be used to specify the default page size of all data grids across an application by specifying
a default value for the PageSize property of the TDataGrid control.

6.3.2 Understanding Themes

A theme is a directory consists of skin files, javascript files and CSS files. Any javascript or CSS
files contained in a theme will be registered with the page that the theme is applied to. A skin is a
set of initial property values for a particular control type. A control type may have one or several
skins, each identified by a unqiue SkinID. When applying a theme to a page, a skin is applied to
a control if the control type and the SkinID value both match to those of the skin. Note, if a skin
has an empty SkinID value, it will apply to all controls of the particular type whose SkinID is not
set or empty. A skin file consists of one or several skins, for one or several control types. A theme
is the union of skins defined in all skin files.

6.3.3 Using Themes

To use a theme, you need to set the Theme property of the page with the theme name, which is
the theme directory name. You may set it in either page configurations or in the constructor or
onPreInit() method of the page. You cannot set the property after onPreInit() because by that
time, child controls of the page are already created (skins must be applied to controls right after
they are created.)

To use a particular skin in the theme for a control, set SkinID property of the control in template
like following,

<com:TButton SkinID="Blue" ... />

This will apply the ’Blue’ skin to the button. Note, the initial property values specified by the
’Blue’ skin will overwrite any existing property values of the button. Use stylesheet theme if you
do not want them to be overwritten. To use stylesheet theme, set the StyleSheetTheme property
of the page instead of Theme (you can have both StyleSheetTheme and Theme).

To use the javascript files and CSS files contained in a theme, a THead control must be placed on
the page template. This is because the theme will register those files with the page and THead is

56

6.3. Themes and Skins

the right place to load those files.

6.3.4 Theme Storage

All themes by default must be placed under the [AppEntryPath]/themes directory, where AppEntryPath
refers to the directory containing the application entry script. If you want to use a different di-
rectory, configure the BasePath and BaseUrl properties of the System.Web.UI.TThemeManager

module in application configuration,

<service id="page" class="TPageService">

<modules>

<module id="theme"

class="System.Web.UI.TThemeManager"

BasePath="mythemes"

BaseUrl="mythemes" />

</modules>

</service>

6.3.5 Creating Themes

Creating a theme involves creating the theme directory and writing skin files (and possibly javascript
and CSS files). The name of skin files must be terminated with .skin. The format of skin files are
the same as that of control template files. Since skin files do not define parent-child presentational
relationship among controls, you cannot place a component tag within another. And any static
texts between component tags are discarded. To define the aforementioned ’Blue’ skin for TButton,
write the following in a skin file,

<com:TButton SkinID="Blue" BackColor="blue" />

As aforementioned, you can put several skins within a single skin file, or split them into several
files. A commonly used strategy is that each skin file only contains skins for one type of controls.
For example, Button.skin would contain skins only for the TButton control type.

57

Chapter 6. Advanced Topics

6.4 Persistent State

Web applications often need to remember what an end user has done in previous page requests so
that the new page request can be served accordingly. State persistence is to address this problem.
Traditionally, if a page needs to keep track of user interactions, it will resort to session, cookie,
or hidden fields. PRADO provides a new line of state persistence schemes, including view state,
control state, and application state.

6.4.1 View State

View state lies at the heart of PRADO. With view state, Web pages become stateful and are
capable of restoring pages to the state that end users interacted with before the current page
request. Web programming thus resembles to Windows GUI programming, and developers can
think continuously without worrying about the roundtrips between end users and the Web server.
For example, with view state, a textbox control is able to detect if the user input changes the
content in the textbox.

View state is only available to controls. View state of a control can be disabled by setting its
EnableViewState property to false. To store a variable in view state, call the following,

$this->setViewState(’Caption’,$caption);

where $this refers to the control object, Caption is a unique key identifying the $caption variable
stored in viewstate. To retrieve the variable back from view state, call the following,

$caption = $this->getViewState(’Caption’);

6.4.2 Control State

Control state is like view state in every aspect except that control state cannot be disabled. Control
state is intended to be used for storing crucial state information without which a page or control
may not work properly.

To store and retrieve a variable in control state, use the followign commands,

$this->setControlState(’Caption’,$caption);

58

6.5. Logging

$caption = $this->getControlState(’Caption’);

6.4.3 Application State

Application state refers to data that is persistent across user sessions and page requests. A typical
example of application state is the user visit counter. The counter value is persistent even if the
current user session terminates. Note, view state and control state are lost if the user requests for
a different page, while session state is lost if the user session terminates.

To store and retrieve a variable in application state, use the followign commands,

$application->setGlobalState(’Caption’,$caption);

$caption = $application->getGlobalState(’Caption’);

6.4.4 Session State

PRADO encapsulates the traditional session management in THttpSession module. The module
can be accessed from within any component by using $this->Session, where $this refers to the
component object.

6.5 Logging

PRADO provides a highly flexible and extensible logging functionality. Messages logged can be
classified according to log levels and message categories. Using level and category filters, the
messages can be further routed to different destinations, such as files, emails, browser windows,
etc. The following diagram shows the basic architecture of PRADO logging mechanism,

6.5.1 Using Logging Functions

The following two methods are provided for logging messages in PRADO,

Prado::log($message, $logLevel, $category);

Prado::trace($message, $category);

59

Chapter 6. Advanced Topics

The difference between Prado::log() and Prado::trace() is that the latter automatically selects
the log level according to the application mode. If the application is in Debug mode, stack trace
information is appended to the messages. Prado::trace() is widely used in the core code of the
PRADO framework.

6.5.2 Message Routing

Messages logged using the above two functions are kept in memory. To make use of the messages,
developers need to route them to specific destinations, such as files, emails, or browser windows.
The message routing is managed by System.Log.TLogRouter module. When plugged into an
application, it can route the messages to different destination in parallel. Currently, PRADO
provides three types of routes:

• TFileLogRoute - filtered messages are stored in a specified log file. By default, this file is
named prado.log under the runtime directory of the application. File rotation is provided.

• TEmailLogRoute - filtered messages are sent to pre-specified email addresses.

• TBrowserLogRoute - filtered messages are appended to the end of the current page output.

To enable message routing, plug in and configure the TLogRouter module in application configu-
ration,

<module id="log" class="System.Log.TLogRouter">

<route class="TBrowserLogRoute"

Levels="Info"

60

6.6. Internationalization (I18N) and Localization (L10N)

Categories="System.Web.UI.TPage, System.Web.UI.WebControls" />

<route class="TFileLogRoute"

Levels="Warning, Error"

Categories="System.Web" />

</module>

In the above, the Levels and Categories specify the log and category filters to selectively retrieve
the messages to the corresponding destinations.

6.5.3 Message Filtering

Messages can be filtered according to their log levels and categories. Each log message is associated
with a log level and a category. With levels and categories, developers can selectively retrieve
messages that they are interested on.

Log levels defined in System.Log.TLogger include : DEBUG, INFO, NOTICE, WARNING, ERROR, ALERT,
FATAL. Messages can be filtered according log level criteria. For example, if a filter specifies WARNING
and ERROR levels, then only those messages that are of WARNING and ERROR will be returned.

Message categories are hierarchical. A category whose name is the prefix of another is said to be
the ancestor category of the other category. For example, System.Web category is the ancestor
of System.Web.UI and System.Web.UI.WebControls categories. Messages can be selectively re-
trieved using such hierarchical category filters. For example, if the category filter is System.Web,
then all messages in the System.Web are returned. In addition, messages in the childd categories,
such as System.Web.UI.WebControls, are also returned.

By convention, the messages logged in the core code of PRADO are categorized according to the
namespace of the corresponding classes. For example, messsages logged in TPage will be of category
System.Web.UI.TPage.

6.6 Internationalization (I18N) and Localization (L10N)

Many web application built with PHP will not have internationalization in mind when it was first
written. It may be that it was not intended for use in languages and cultures. Internationalization
is an important aspect due to the increase adoption of the Internet in many non-English speaking

61

Chapter 6. Advanced Topics

countries. The process of internationalization and localization will contain difficulties. Below are
some general guidelines to internationalize an existing application.

6.6.1 Separate culture/locale sensitive data

Identify and separate data that varies with culture. The most obvious are text/string/message.
Other type of data should also be considered. The following list categorize some examples of
culture sensitive data

• Strings, Messages, Text, in relatively small units (e.g. phrases, sentences, paragraphs, but
not the full text of a book).

• Labels on buttons.

• Help files, large units of text, static text.

• Sounds.

• Colors.

• Graphics,Icons.

• Dates, Times.

• Numbers, Currency, Measurements.

• Phone numbers.

• Honorifics and personal titles.

• Postal address.

• Page layout.

If possible all manner of text should be isolated and store in a persistence format. These text
include, application error messages, hard coded strings in PHP files, emails, static HTML text,
and text on form elements (e.g. buttons).

62

6.6. Internationalization (I18N) and Localization (L10N)

6.6.2 Configuration

To enable the localization features in Prado, you need to add a few configuration options in your
application configuration. First you need to include the System.I18N.* namespace to your paths.

<paths>

<using namespace="System.I18N.*" />

</paths>

Then, if you wish to translate some text in your application, you need to add one translation
message data source.

<module id="globalization" class="TGlobalization">

<translation type="XLIFF"

source="MyApp.messages"

autosave="true" cache="true" />

</module>

Where source in translation is the dot path to a directory where you are going to store your
translate message catalogue. The autosave attribute if enabled, saves untranslated messages back
into the message catalogue. With cache enabled, translated messages are saved in the application
runtime/i18n directory.

With the configuration complete, we can now start to localize your application. If you have
autosave enabled, after running your application with some localization activity (i.e. translating
some text), you will see a directory and a messages.xml created within your source directory.

6.6.3 What to do with messages.xml?

The translation message catalogue file, if using type="XLIFF", is a standardized translation mes-
sage interchange XML format. You can edit the XML file using any UTF-8 aware editor. The
format of the XML is something like the following.

<?xml version="1.0"?>

<xliff version="1.0">

<file original="I18N Example IndexPage"

63

Chapter 6. Advanced Topics

source-language="EN"

datatype="plaintext"

date="2005-01-24T11:07:53Z">

<body>

<trans-unit id="1">

<source>Hello world.</source>

<target>Hi World!!!</target>

</trans-unit>

</body>

</file>

</xliff>

Each translation message is wrapped within a trans-unit tag, where source is the original mes-
sage, and target is the translated message. Editors such as Heartsome XLIFF Translation Editor
can help in editing these XML files.

6.6.4 Setting and Changing Culture

Once globalization is enabled, you can access the globalization settings, such as, Culture, Charset,
etc, using

$globalization = $this->getApplication()->getGlobalization();

echo $globalization->Culture;

$globalization->Charset= "GB-2312"; //change the charset

You also change the way the culture is determined by changing the class attribute in the module
configuration. For example, to set the culture that depends on the browser settings, you can use
the TGlobalizationAutoDetect class.

<module id="globalization" class="TGlobalizationAutoDetect">

...

</module>

64

http://www.heartsome.net/EN/xlfedit.html

6.6. Internationalization (I18N) and Localization (L10N)

You may also provide your own globalization class to change how the application culture is set.
Lastly, you can change the globalization settings on page by page basis using template control
tags. For example, changing the Culture to ”zh”.

<%@ Application.Globalization.Culture="zh" %>

6.6.5 Localizing your Prado application

There are two areas in your application that may need message or string localization, in PHP code
and in the templates. To localize strings within PHP, use the localize function detailed below.
To localize text in the template, use the TTranslate component.

6.6.6 Using localize function to translate text within PHP

The localize function searches for a translated string that matches original from your translation
source. First, you need to locate all the hard coded text in PHP that are displayed or sent to the
end user. The following example localizes the text of the $sender (assuming, say, the sender is a
button). The original code before localization is as follows.

function clickMe($sender,$param)

{

$sender->Text="Hello, world!";

}

The hard coded message ”Hello, world!” is to be localized using the localize function.

function clickMe($sender,$param)

{

$sender->Text=localize("Hello, world!");

}

6.6.7 Compound Messages

Compound messages can contain variable data. For example, in the message ”There are 12 users
online.”, the integer 12 may change depending on some data in your application. This is difficult

65

Chapter 6. Advanced Topics

to translate because the position of the variable data may be difference for different languages.
In addition, different languages have their own rules for plurals (if any) and/or quantifiers. The
following example can not be easily translated, because the sentence structure is fixed by hard
coding the variable data within message.

$num_users = 12;

$message = "There are " . $num_users . " users online.";

This problem can be solved using the localize function with string substitution. For example,
the $message string above can be constructed as follows.

$num_users = 12;

$message = localize("There are {num_users} users online.", array(’num_users’=>$num_users));

Where the second parameter in localize takes an associative array with the key as the substitution
to find in the text and replaced it with the associated value. The localize function does not solve
the problem of localizing languages that have plural forms, the solution is to use TChoiceFormat.

6.7 I18N Components

6.7.1 TTranslate

Messages and strings can be localized in PHP or in templates. To translate a message or string in
the template, use TTranslate.

<com:TTranslate>Hello World</com:TTranslate>

<com:TTranslate Text="Goodbye" />

TTranslate can also perform string substitution. Any attributes of TTranslate will be substituted
with {attribute name} in the translation. E.g.

<com:TTranslate time="late">

The time is {time}.

</com:TTranslate>

66

6.7. I18N Components

A short for TTranslate is also provided using the following syntax.

<%[string]>

where string will be translated to different languages according to the end-user’s language prefer-
ence. This syntax can be used with attribute values as well.

<com:TLabel Text="<%[Hello World!]%>" />

6.7.2 TDateFormat

Formatting localized date and time is straight forward.

<com:TDateFormat Value="12/01/2005" />

There are of 4 localized date patterns and 4 localized time patterns. They can be used in any
combination. If using a combined pattern, the first must be the date, followed by a space, and
lastly the time pattern. For example, full date pattern with short time pattern.

<com:TDateFormat Pattern="fulldate shorttime" />

If the Value property is not specified, the current date and time is used.

6.7.3 TNumberFormat

PRADO’s Internationalization framework provide localized currency formatting and number for-
matting. Please note that the TNumberFormat component provides formatting only, it does not
perform current conversion or exchange.

<com:TNumberFormat Type="currency" Value="100" />

Culture and Currency properties may be specified to format locale specific numbers.

67

Chapter 6. Advanced Topics

6.7.4 TTranslateParameter

Compound messages, i.e., string substitution, can be accomplished with TTranslateParameter.
In the following example, the strings ”{greeting}” and ”{name}” will be replace with the values of
”Hello” and ”World”, respectively.The substitution string must be enclose with ”{” and ”}”. The
parameters can be further translated by using TTranslate.

<com:TTranslate>

{greeting} {name}!

<com:TTranslateParameter Key="name">World</com:TTranslateParameter>

<com:TTranslateParameter Key="greeting">Hello</com:TTranslateParameter>

</com:TTranslate>

6.7.5 TChoiceFormat

Using the localize function or TTranslate component to translate messages does not inform
the translator the cardinality of the data required to determine the correct plural structure to
use. It only informs them that there is a variable data, the data could be anything. Thus, the
translator will be unable to determine with respect to the substitution data the correct plural,
language structure or phrase to use . E.g. in English, to translate the sentence, ”There are number
of apples.”, the resulting translation should be different depending on the number of apples.

The TChoiceFormat component performs message/string choice translation. The following exam-
ple demonstrated a simple 2 choice message translation.

<com:TChoiceFormat Value="1"/>[1] One Apple. |[2] Two Apples</com:TChoiceFormat>

In the above example, the Value ”1” (one), thus the translated string is ”One Apple”. If the Value
was ”2”, then it will show ”Two Apples”.

The message/string choices are separated by the pipe ”—” followed by a set notation of the form.

• [1,2] – accepts values between 1 and 2, inclusive.

• (1,2) – accepts values between 1 and 2, excluding 1 and 2.

• {1,2,3,4} – only values defined in the set are accepted.

68

6.8. Error Handling and Reporting

• [-Inf,0) – accepts value greater or equal to negative infinity and strictly less than 0

Any non-empty combinations of the delimiters of square and round brackets are acceptable. The
string chosen for display depends on the Value property. The Value is evaluated for each set until
the Value is found to belong to a particular set.

6.8 Error Handling and Reporting

PRADO provides a complete error handling and reporting framework based on the PHP 5 exception
mechanism.

6.8.1 Exception Classes

Errors occur in a PRADO application may be classified into three categories: those caused by
PHP script parsing, those caused by wrong code (such as calling an undefined function, setting
an unknown property), and those caused by improper use of the Web application by client users
(such as attempting to access restricted pages). PRADO is unable to deal with the first category
of errors because they cannot be caughted in PHP code. PRADO provides an exception hierarchy
to deal with the second and third categories.

All errors in PRADO applications are represented as exceptions. The base class for all PRADO
exceptions is TException. It provides the message internationalization functionality to all system
exceptions. An error message may be translated into different languages according to the user
browser’s language preference.

Exceptions raised due to improper usage of the PRADO framework inherit from TSystemException,
which can be one of the following exception classes:

• TConfigurationException - improper configuration, such as error in application configura-
tion, control templates, etc.

• TInvalidDataValueException - data value is incorrect or unexpected.

• TInvalidDataTypeException - data type is incorrect or unexpected.

• TInvalidDataFormatException - format of data is incorrect.

69

Chapter 6. Advanced Topics

• TInvalidOperationException - invalid operation request.

• TPhpErrorException - caughtable PHP errors, warnings, notices, etc.

• TSecurityException - errors related with security.

• TIOException - IO operation error, such as file open failure.

• TDBException - errors related with database operations.

• TNotSupportedException - errors caused by requesting for unsupported feature.

• THttpException - errors to be displayed to Web client users.

Errors due to improper usage of the Web application by client users inherit from TApplicationException.

6.8.2 Raising Exceptions

Raising exceptions in PRADO has no difference than raising a normal PHP exception. The only
thing matters is to raise the right exception. In general, exceptions meant to be shown to appli-
cation users should use THttpException, while exceptions shown to developers should use other
exception classes.

6.8.3 Error Capturing and Reporting

Exceptions raised during the runtime of PRADO applications are captured by System.Exceptions.TErrorHandler

module. Different output templates are used to display the captured exceptions. THttpException
is assumed to contain error messages that are meant for application end users and thus uses a
specific group of templates. For all other exceptions, a common template shown as follows is used
for presenting the exceptions.

6.8.4 Customizing Error Display

Developers can customize the presentation of exception messages. By default, all error output
templates are stored under framework/Exceptions/templates. The location can be changed by
configuring TErrorHandler in application configuration,

70

file:<%~ exception2.gif %>

6.8. Error Handling and Reporting

<module id="error"

class="TErrorHandler">

ErrorTemplatePath="Application.ErrorTemplates" />

THttpException uses a set of templates that are differentiated according to different StatusCode
property value of THttpException. StatusCode has the same meaning as the status code in HTTP
protocol. For example, a status code equal to 404 means the requested URL is not found on the
server. The StatusCode value is used to select which output template to use. The output template
files use the following naming convention:

error<status code>-<language code>.html

where status code refers to the StatusCode property value of THttpException, and language

code must be a valid language such as en, zh, fr, etc. When a THttpException is raised, PRADO
will select an appropriate template for displaying the exception message. PRADO will first locate
a template file whose name contains the status code and whose language is preferred by the client
browser window. If such a template is not present, it will look for a template that has the same
status code but without language code.

The naming convention for the template files used for all other exceptions is as follows,

exception-<language code>.html

Again, if the preferred language is not found, PRADO will try to use exception.html, instead.

CAUTION: When saving a template file, please make sure the file is saved using UTF-8 encoding.
On Windows, you may use Notepad.exe to accomplish such saving.

71

Chapter 6. Advanced Topics

6.9 Performance Tuning

Performance of Web applications is affected by many factors. Database access, file system opera-
tions, network bandwidth are all potential affecting factors. PRADO tries in every effort to reduce
the performance impact caused by the framework.

6.9.1 Caching

PRADO provides a generic caching technique used by in several core parts of the framework. For
example, when caching is enabled, TTemplateManager will save parsed templates in cache and
reuse them in the following requests, which saves time for parsing templates. The TThemeManager

adopts the similar strategy to deal with theme parsing.

Enabling caching is very easy. Simply add the cache module in the application configuration, and
PRADO takes care of the rest.

<modules>

<module id="cache" class="System.Data.TSqliteCache" />

</modules>

Developers can also take advantage of the caching technique in their applications. The Cache

property of TApplication returns the plugged-in cache module when it is available. To save and
retrieve a data item in cache, use the following commands,

if($application->Cache) {

// saves data item in cache

$application->Cache->set($keyName,$dataItem);

// retrieves data item from cache

$dataItem=$application->Cache->get($keyName);

}

where $keyName should be a string that uniquely identifies the data item stored in cache.

72

6.9. Performance Tuning

6.9.2 Using pradolite.php

Including many PHP script files may impact application performance significantly. PRADO classes
are stored in different files and when processing a page request, it may require including tens of
class files.To alleviate this problem, in each PRADO release, a file named pradolite.php is also
included. The file is a merge of all core PRADO class files with comments being stripped off and
message logging removed.

To use pradolite.php, in your application entry script, replace the inclusion of prado.php with
pradolite.php.

6.9.3 Changing Application Mode

Application mode also affects application performance. A PRADO application can be in one of
the following modes: Off, Debug, Normal and Performance. The Debug mode should mainly be
used during application development, while Normal mode is usually used in early stage after an
application is deployed to ensure everything works correctly. After the application is proved to
work stably for some period, the mode can be switched to Performance to further improve the
performance.

The difference between Debug, Normal and Performance modes is that under Debug mode, appli-
cation logs will contain debug information, and under Performance mode, timestamp checking is
not performed for cached templates and published assets. Therefore, under Performance mode,
application may not run properly if templates or assets are modified. Since Performance mode is
mainly used when an application is stable, change of templates or assets are not likely.

To switch application mode, configure it in application configuration:

<application Mode="Performance" >

......

</application >

6.9.4 Reducing Page Size

By default, PRADO stores page state in hidden fields of the HTML output. The page state could
be very large in size if complex controls, such as TDataGrid, is used. To reduce the size of the

73

Chapter 6. Advanced Topics

network transmitted page size, two strategies can be used.

First, you may disable viewstate by setting EnableViewState to false for the page or some controls
on the page if they do not need user interactions. Viewstate is mainly used to keep track of page
state when a user interacts with that page.

Second, you may use a different page state storage. For example, page state may be stored in ses-
sion, which essentially stores page state on the server side and thus saves the network transmission
time. The module responsible for page state storage is System.Web.UI.TPageStatePersister,
which uses hidden fields as persistent storage. To use your own storage, configure the module in
application configuration as follows,

<service id="page" class="TPageService">

<modules>

<module id="state" class="MyPageStatePersister" />

</modules>

</service>

6.9.5 Other Techniques

Server caching techniques are proven to be very effective in improving the performance of PRADO
applications. For example, we have observed that by using Zend Optimizer, the RPS (request per
second) of a PRADO application can be increased by more than ten times. Of course, this is at
the cost of stale output, while PRADO’s caching techniques always ensure the correctness of the
output.

74

	Contents
	Preface
	License
	Getting Started
	Welcome to the PRADO QuickStart Tutorial
	What is PRADO?
	Installing PRADO

	Fundamentals
	Architecture
	Components
	Component Properties
	Component Events
	Namespaces
	Component Instantiation

	Controls
	Control Tree
	Control Identification
	Naming Containers
	ViewState and ControlState

	Pages
	PostBack
	Page Lifecycles

	Modules
	Request Module
	Response Module
	Session Module
	Error Handler Module
	Custom Modules

	Services
	Page Service

	Applications
	Directory Organization
	Application Deployment
	Application Lifecycles

	Sample: Hello World
	Sample: Hangman Game

	Configurations
	Configuration Overview
	Templates: Part I
	Component Tags
	Template Control Tags
	Comment Tags

	Templates: Part II
	Dynamic Content Tags

	Templates: Part III
	Dynamic Property Tags

	Application Configurations
	Page Configurations

	Controls
	Controls Overview
	Simple HTML Controls
	TLabel
	THyperLink
	TImage
	TPanel
	TTable
	TTextBox
	TButton
	TLinkButton
	TImageButton
	TCheckBox
	TRadioButton

	List Controls
	TListBox
	TDropDownList
	TCheckBoxList
	TRadioButtonList
	TBulletList

	Validation Controls
	TRequiredFieldValidator
	TRegularExpressionValidator
	TEmailAddressValidator
	TCompareValidator
	TCustomValidator
	TValidationSummary

	TDataList
	TDataGrid

	Security
	Authentication and Authorization
	How PRADO Auth Framework Works
	Using PRADO Auth Framework
	Using TUserManager

	Viewstate Protection
	Cross Site Scripting Prevention

	Advanced Topics
	Assets
	Asset Publishing
	Customization
	Performance
	A Toggle Button Example

	Master and Content
	Themes and Skins
	Introduction
	Understanding Themes
	Using Themes
	Theme Storage
	Creating Themes

	Persistent State
	View State
	Control State
	Application State
	Session State

	Logging
	Using Logging Functions
	Message Routing
	Message Filtering

	Internationalization (I18N) and Localization (L10N)
	Separate culture/locale sensitive data
	Configuration
	What to do with messages.xml?
	Setting and Changing Culture
	Localizing your Prado application
	Using localize function to translate text within PHP
	Compound Messages

	I18N Components
	TTranslate
	TDateFormat
	TNumberFormat
	TTranslateParameter
	TChoiceFormat

	Error Handling and Reporting
	Exception Classes
	Raising Exceptions
	Error Capturing and Reporting
	Customizing Error Display

	Performance Tuning
	Caching
	Using pradolite.php
	Changing Application Mode
	Reducing Page Size
	Other Techniques

