
Prado Quick Start

Qiang Xue

January 22, 2006

Compiled by Wei Zhuo

Contents

Contents i

Preface v

1 Getting Started 1

1.1 Welcome to the PRADO QuickStart Tutorial . 1

1.2 What is PRADO? . 1

1.3 Installing PRADO . 2

2 Fundamentals 3

2.1 Architecture . 3

2.2 Components . 3

2.2.1 Component Properties . 3

2.2.2 Component Events . 5

2.2.3 Namespaces . 6

2.2.4 Component Instantiation . 7

2.3 Controls . 8

2.3.1 Control Tree . 8

i

2.3.2 Control Identification . 8

2.3.3 Naming Containers . 9

2.3.4 ViewState and ControlState . 9

2.4 Pages . 10

2.4.1 PostBack . 10

2.4.2 Page Lifecycles . 10

2.5 Modules . 11

2.5.1 Request Module . 11

2.5.2 Response Module . 11

2.5.3 Session Module . 12

2.5.4 Error Handler Module . 12

2.5.5 Custom Modules . 12

2.6 Services . 12

2.6.1 Page Service . 13

2.7 Applications . 14

2.7.1 Directory Organization . 14

2.7.2 Application Deployment . 15

2.7.3 Application Lifecycles . 15

2.8 Sample: Hello World . 15

2.9 Sample: Hangman Game . 16

3 Configurations 21

3.1 Configuration Overview . 21

3.2 Templates: Part I . 21

ii

3.2.1 Component Tags . 22

3.2.2 Template Control Tags . 23

3.2.3 Comment Tags . 23

3.3 Templates: Part II . 24

3.3.1 Dynamic Content Tags . 24

3.4 Templates: Part III . 26

3.4.1 Dynamic Property Tags . 26

3.5 Application Configurations . 28

3.6 Page Configurations . 30

4 Controls 33

4.1 Controls Overview . 33

4.2 Simple HTML Controls . 33

4.2.1 TLabel . 33

4.2.2 THyperLink . 34

4.2.3 TImage . 34

4.2.4 TPanel . 34

4.2.5 TTable . 34

4.2.6 TTextBox . 35

4.2.7 TButton . 35

4.2.8 TLinkButton . 35

4.2.9 TImageButton . 36

4.2.10 TCheckBox . 36

4.2.11 TRadioButton . 36

iii

4.3 List Controls . 37

4.3.1 TListBox . 37

4.3.2 TDropDownList . 38

4.3.3 TCheckBoxList . 38

4.3.4 TRadioButtonList . 38

4.3.5 TBulletList . 38

4.4 Validation Controls . 38

4.4.1 TRequiredFieldValidator . 38

4.4.2 TRegularExpressionValidator . 38

4.4.3 TEmailAddressValidator . 39

4.4.4 TEmailAddressValidator . 39

4.4.5 TCompareValidator . 39

4.4.6 TCustomValidator . 39

4.4.7 TValidationSummary . 39

4.5 TDataList . 39

4.6 TDataGrid . 39

iv

Preface

Prado quick start doc

v

Chapter 1

Getting Started

1.1 Welcome to the PRADO QuickStart Tutorial

This QuickStart tutorial is meant to get you quickly started to build your own Web applications
based on PRADO.

1.2 What is PRADO?

PRADO stands for PHP Rapid Application Development Object-oriented.

PRADO is a component-based and event-driven programming framework for developing Web ap-
plications in PHP 5.

PRADO stipulates a protocol of writing and using components to construct Web applications.
A component is a software unit that is self-contained and can be reused with trivial customiza-
tion. New components can be developed by either inheriting or composing from existing ones.
Component-based programming brings great freedom in teamwork anf offers the ultimate exten-
sibility and maintenability to the code. PRADO implements a set of elementary components that
represent commonly used Web elements, such as input field, checkbox, dropdown list, etc.

PRADO implements an event-driven programming scheme that allows delegation of extensible
behavior to components. End-user activities, such as clicking on a submit button, changing the

1

Chapter 1. Getting Started

content in an input field, are captured as server events. Methods or functions may be attached
to these events so that when the events happen, they are invoked automatically to respond to the
events. Compared with the traditional Web programming in which developers have to deal with
the raw POST or GET variables, event-driven programming helps developers better focus on the
necessary logic and reduces significantly the low-level repetitive coding.

Developing a PRADO Web application mainly involves instantiating prebuilt component types,
configuring them by setting their properties, responding to their events by writing handler func-
tions, and composing them into pages for the application. It is very similar to RAD toolkits, such
as Borland Delphi and Microsoft Visual Basic, that are used to develop desktop GUI applications.

1.3 Installing PRADO

If you are viewing this page from your own Web server, you are already done with the installation.
The instructions at the end of this page, however, may still be useful for you to troubleshoot issues
happened during your development based on PRADO.

Installation of PRADO is very easy. Follow the following steps,

• Go to pradosoft.com to grab a latest version of PRADO.

• Unpack the PRADO release file using unzip on Linux or winzip on Windows. A directory
named prado will be created under the working directory.

• Copy or upload everything under the prado directory to the DocumentRoot directory (or a
subdirectory) of the Web server.

• Your installation of PRADO is done and you can start to play with the demo applications
included in the PRADO release via URL http://web-server-address/demos/. This QuickStart
Tutorial is one of such applications.

If you encounter any problems with the demo applications, please use the PRADO requirement
checker script to check first if your server configuration fullfils the conditions required by PRADO.

The minimum requirement by PRADO is that the Web server support PHP 5. PRADO has been
tested with Apache Web server on Windows and Linux. Highly possibly it may also run on other
platforms with other Web servers, as long as PHP 5 is supported.

2

http://www.pradosoft.com/

Chapter 2

Fundamentals

2.1 Architecture

PRADO is primarily a presentational framework, although it is not limited to be so. The framework
focuses on making Web programming, which deals most of the time with user interactions, to be
component-based and event-driven so that developers can be more productive. The following class
tree depicts the skeleton classes provided by PRADO,

When a PRADO application is processing a page request, its static object diagram can be shown
as follows,

2.2 Components

A component is an instance of TComponent or its child class. The base class TComponent implements
the mechanism of component properties and events.

2.2.1 Component Properties

A component property can be viewed as a public variable describing a specific aspect of the
component, such as the background color, the font size, etc. A property is defined by the existence

3

Chapter 2. Fundamentals

of a getter and/or a setter method in the component class. For example, in TControl, we define
its ID property using the following getter and setter methods,

class TControl extends TComponent {

public function getID() {

...

}

public function setID($value) {

...

}

}

4

2.2. Components

To get or set the ID property, do as follows, just like working with a variable,

$id = $component->ID;

$component->ID = $id;

This is equivalent to the following,

$id = $component->getID();

$component->setID($id);

A property is read-only if it has a getter method but no setter method. Since PHP method names
are case-insensitive, property names are also case-insensitive. A component class inherits all its
ancestor classes’ properties.

Subproperties

A subproperty is a property of some object-typed property. For example, TWebControl has a Font

property which is of TFont type. Then the Name property of Font is referred to as a subproperty
(with respect to TWebControl).

To get or set the Name subproperty, use the following method,

$name = $component->getSubProperty(’Font.Name’);

$component->setSubProperty(’Font.Name’, $name);

This is equivalent to the following,

$name = $component->getFont()->getName();

$component->getFont()->setName($name);

2.2.2 Component Events

Component events are special properties that take method names as their values. Attaching
(setting) a method to an event will hook up the method to the places at which the event is raised.
Therefore, the behavior of a component can be modified in a way that may not be foreseen during
the development of the component.

5

Chapter 2. Fundamentals

A component event is defined by the existence of a method whose name starts with the word on.
The event name is the method name and is thus case-insensitve. For example, in TButton, we have

class TButton extends TWebControl {

public function onClick($param) {

...

}

}

This defines an event named OnClick, and a handler can be attached to the event using one of the
following ways,

$button->OnClick = $callback;

$button->OnClick->add($callback);

$button->OnClick[] = $callback;

$button->attachEventHandler(’OnClick’ , $callback);

where $callback refers to a valid PHP callback (e.g. a function name, a class method array($object,’method’),
etc.)

2.2.3 Namespaces

A namespace refers to a logical grouping of some class names so that they can be differentiated
from other class names even if their names are the same. Since PHP does not support namespace
intrinsically, you cannot create instances of two classes who have the same name but with different
definitions. To differentiate from user defined classes, all PRADO classes are prefixed with a letter
’T’ (meaning ’Type’). Users are advised not to name their classes like this. Instead, they may
prefix their class names with any other letter(s).

A namespace in PRADO is considered as a directory containing one or several class files. A class
may be specified without ambiguity using such a namespace followed by the class name. Each
namespace in PRADO is specified in the following format,

PathAlias.Dir1.Dir2

where PathAlias is an alias of some directory, while Dir1 and Dir2 are subdirectories under that di-
rectory. A class named MyClass defined under Dir2 may now be fully qualified as PathAlias.Dir1.Dir2.MyClass.

6

2.2. Components

To use a namespace in code, do as follows,

Prado::using(’PathAlias.Dir1.Dir2.*’);

which appends the directory referred to by PathAlias.Dir1.Dir2 into PHP include path so that
classes defined under that directory may be instantiated without the namespace prefix. You may
also include an individual class definition by

Prado::using(’PathAlias.Dir1.Dir2.MyClass’);

which will include the class file if MyClass is not defined.

For more details about defining path aliases, see application configuration section.

2.2.4 Component Instantiation

Component instantiation means creating instances of component classes. There are two types of
component instantation: static instantiation and dynamic instantiation. The created components
are called static components and dynamic components, respectively.

Dynamic Component Instantiation

Dynamic component instantiation means creating component instances in PHP code. It is the
same as the commonly referred object creation in PHP. A component can be dynamically created
using one of the following two methods in PHP,

$component = new ComponentClassName;

$component = Prado::createComponent(’ComponentType’);

where ComponentType refers to a class name or a type name in namespace format (e.g. System.Web.UI.TControl).
The second approach is introduced to compensate for the lack of namespace support in PHP.

Static Component Instantiation

Static component instantiation is about creating components via configurations. The actual cre-
ation work is done by the PRADO framework. For example, in an application configuration, one

7

Chapter 2. Fundamentals

can configure a module to be loaded when the application runs. The module is thus a static
component created by the framework. Static component instantiation is more commonly used in
templates. Every component tag in a template specifies a component that will be automatically
created by the framework when the template is loaded. For example, in a page template, the
following tag will lead to the creation of a TButton component on the page,

<com:TButton Text="Register" />

2.3 Controls

A control is an instance of class TControl or its subclass. A control is a component defined in
addition with user interface. The base class TControl defines the parent-child relationship among
controls which reflects the containment relationship among user interface elements.

2.3.1 Control Tree

Controls are related to each other via parent-child relationship. Each parent control can have one or
several child controls. A parent control is in charge of the state transition of its child controls. The
rendering result of the child controls are usually used to compose the parent control’s presentation.
The parent-child relationship brings together controls into a control tree. A page is at the root of
the tree, whose presentation is returned to the end-users.

The parent-child relationship is usually established by the framework via templates. In code, you
may explicitly specify a control as a child of another using one of the following methods,

$parent->Controls->add($child);

$parent->Controls[]=$child;

where the property Controls refers to the child control collection of the parent.

2.3.2 Control Identification

Each control has an ID property that can be uniquely identify itself among its sibling controls.
In addition, each control has a UniqueID and a ClientID which can be used to globally identify

8

2.3. Controls

the control in the tree that the control resides in. UniqueID and ClientID are very similar. The
former is used by the framework to determine the location of the corresponding control in the tree,
while the latter is mainly used on the client side as HTML tag IDs. In general, you should not
rely on the explicit format of UniqueID or ClientID.

2.3.3 Naming Containers

Each control has a naming container which is a control creating a unique namespace for differ-
entiating between controls with the same ID. For example, a TRepeater control creates multiple
items each having child controls with the same IDs. To differentiate these child controls, each
item serves as a naming container. Therefore, a child control may be uniquely identified using its
naming container’s ID together with its own ID. As you may already have understood, UniqueID
and ClientID rely on the naming containers.

A control can serve as a naming container if it implements the INamingContainer interface.

2.3.4 ViewState and ControlState

HTTP is a stateless protocol, meaning it does not provide functionality to support continuing
interaction between a user and a server. Each request is considered as discrete and independent
of each other. A Web application, however, often needs to know what a user has done in previous
requests. People thus introduce sessions to help remember such state information.

PRADO borrows the viewstate and controlstate concept from Microsoft ASP.NET to provides
additional stateful programming mechanism. A value storing in viewstate or controlstate may be
available to the next requests if the new requests are form submissions (called postback) to the
same page by the same user. The difference between viewstate and controlstate is that the former
can be disabled while the latter cannot.

Viewstate and controlstate are implemented in TControl. They are commonly used to define
various properties of controls. To save and retrieve values from viewstate or controlstate, use
following methods,

$this->getViewState(’Name’,$defaultValue);

$this->setViewState(’Name’,$value,$defaultValue);

$this->getControlState(’Name’,$defaultValue);

9

Chapter 2. Fundamentals

$this->setControlState(’Name’,$value,$defaultValue);

where $this refers to the control instance, Name refers to a key identifying the persistent value,
$defaultValue is optional. When retrieving values from viewstate or controlstate, if the corre-
sponding key does not exist, the default value will be returned.

2.4 Pages

Pages are top-most controls that have no parent. The presentation of pages are directly displayed
to end-users. Users access pages by sending page service requests.

Each page must have a template file. The file name suffix must be .page. The file name (without
suffix) is the page name. PRADO will try to locate a page class file under the directory containing
the page template file. Such a page class file must have the same file name (suffixed with .php) as
the template file. If the class file is not found, the page will take class TPage.

2.4.1 PostBack

A form submission is called postback if the submission is made to the page containing the form.
Postback can be considered an event happened on the client side, raised by the user. PRADO
will try to identify which control on the server side is responsible for a postback event. If one is
determined, for example, a TButton, we call it the postback event sender which will translate the
postback event into some specific server-side event (e.g. Click and Command events for TButton).

2.4.2 Page Lifecycles

Understanding the page lifecycles is crucial to grasp PRADO programming. Page lifecycles refer
to the state transitions of a page when serving this page to end-users. They can be depicted in the
following statechart,

10

2.5. Modules

2.5 Modules

A module is an instance of a class implementing the IModule interface. A module is commonly
designed to provide specific functionality that may be plugged into a PRADO application and
shared by all components in the application.

PRADO uses configurations to specify whether to load a module, load what kind of modules,
and how to initialize the loaded modules. Developers may replace the core modules with their
own implementations via application configuration, or they may write new modules to provide
additional functionalities. For example, a module may be developed to provide common database
logic for one or several pages. For more details, please see the configurations.

There are three core modules that are loaded by default whenever an application runs. They are
request module, response module, and error handler module. In addition, session module is loaded
when it is used in the application. PRADO provides default implementation for all these modules.
Custom modules may be configured or developed to override or supplement these core modules.

2.5.1 Request Module

Request module represents provides storage and access scheme for user request sent via HTTP. User
request data comes from several sources, including URL, post data, session data, cookie data, etc.
These data can all be accessed via the request module. By default, PRADO uses THttpRequest

as request module. The request module can be accessed via the Request property of application
and controls.

2.5.2 Response Module

Response module implements the mechanism for sending output to client users. Response module
may be configured to control how output are cached on the client side. It may also be used to send
cookies back to the client side. By default, PRADO uses THttpResponse as response module. The
response module can be accessed via the Response property of application and controls.

11

Chapter 2. Fundamentals

2.5.3 Session Module

Session module encapsulates the functionalities related with user session handling. Session module
is automatically loaded when an application uses session. By default, PRADO uses THttpSession
as session module, which is a simple wrapper of the session functions provided by PHP. The session
module can be accessed via the Session property of application and controls.

2.5.4 Error Handler Module

Error handler module is used to capture and process all error conditions in an application. PRADO
uses TErrorHandler as error handler module. It captures all PHP warnings, notices and exceptions,
and displays in an appropriate form to end-users. The error handler module can be accessed via
the ErrorHandler property of the application instance.

2.5.5 Custom Modules

PRADO is released with a few more modules besides the core ones. They include caching modules
(TSqliteCache and TMemCache), user management module (TUserManager), authentication and
authorization module (TAuthManager), etc.

When TPageService is requested, it also loads modules specific for page service, including asset
manager (TAssetManager), template manager (TTemplateManager), theme/skin manager (TThemeManager),
and page state persister (TPageStatePersister).

Custom modules and core modules are all configurable via configurations.

2.6 Services

A service is an instance of a class implementing the IService interface. Each kind of service
processes a specific type of user requests. For example, the page service responds to users’ requests
for PRADO pages.

A service is uniquely identified by its ID property. By default when THttpRequest is used as the
request module, GET variable names are used to identify which service a user is requesting. If a
GET variable name is equal to some service ID, the request is considered for that service, and the

12

2.6. Services

value of the GET variable is passed as the service parameter. For page service, the name of the GET
variable must be page. For example, the following URL requests for the Fundamentals.Services

page,

http://hostname/index.php?page=Fundamentals.Services

Developers may implement additional services for their applications. To make a service available,
configure it in application configurations.

2.6.1 Page Service

PRADO implements TPageService to process users’ page requests. Pages are stored under a
directory specified by the BasePath property of the page service. The property defaults to pages

directory under the application base path. You may change this default by configuring the service
in the application configuration.

Pages may be organized into subdirectories under the BasePath. In each directory, there may be a
page configuration file named config.xml, which contains configurations effective only when a page
under that directory or a sub-directory is requested. For more details, see the page configuration
section.

Service parameter for the page service refers to the page being requested. A parameter like
Fundamentals.Services refers to the Services page under the <BasePath>/Fundamentals di-
rectory. If such a parameter is absent in a request, a default page named Home is assumed. Using
THttpRequest as the request module (default), the following URLs will request for Home, About
and Register pages, respectively,

http://hostname/index.php

http://hostname/index.php?page=About

http://hostname/index.php?page=Users.Register

where the first example takes advantage of the fact that the page service is the default service and
Home is the default page.

13

Chapter 2. Fundamentals

2.7 Applications

An application is an instance of TApplication or its derived class. It manages modules that
provide different functionalities and are loaded when needed. It provides services to end-users. It
is the central place to store various parameters used in an application. In a PRADO application,
the application instance is the only object that is globally accessible via Prado::getApplication()
function call.

Applications are configured via application configurations. They are usually created in entry scripts
like the following,

require_once(’/path/to/prado.php’);

$application = new TApplication;

$application->run();

where the method run() starts the application to handle user requests.

2.7.1 Directory Organization

A minimal PRADO application contains two files: an entry file and a page template file. They
must be organized as follows,

1. wwwroot - Web document root or sub-directory.

2. index.php - entry script of the PRADO application.

3. assets - directory storing published private files. See assets section.

4. protected - application base path storing application data and private script files. This
directory should be configured inaccessible to Web-inaccessible, or it may be located outside
of Web directories.

5. runtime - application runtime storage path. This directory is used by PRADO to store
application runtime information, such as application state, cached data, etc.

6. pages - base path storing all PRADO pages. See services section.

7. Home.page - default page returned when users do not explicitly specify the page requested.
This is a page template file. The file name without suffix is the page name. The page class
is TPage. If there is also a class file Home.php, the page class becomes Home.

14

2.8. Sample: Hello World

A product PRADO application usually needs more files. It may include an application configura-
tion file named application.xml under the application base path protected. The pages may be
organized in directories, some of which may contain page configuration files named config.xml.
Fore more details, please see configurations section.

2.7.2 Application Deployment

Deploying a PRADO application mainly involves copying directories. For example, to deploy the
above minimal application to another server, follow the following steps,

• Copy the content under wwwroot to a Web-accessible directory on the new server.

• Modify the entry script file index.php so that it includes correctly the prado.php file.

• Remove all content under assets and runtime directories and make sure both directories
are writable by the Web server process.

2.7.3 Application Lifecycles

Like page lifecycles, an application also has lifecycles. Application modules can register for the
lifecycle events. When the application reaches a particular lifecycle and raises the corresponding
event, the registered module methods are invoked automatically. Modules included in the PRADO
release, such as TAuthManager, are using this way to accomplish their goals.

The application lifecycles can be depicted as follows,

2.8 Sample: Hello World

”Hello World” perhaps is the simplest interactive PRADO application that you can build. It
displays to end-users a page with a submit button whose caption is Click Me. When the user clicks
on the button, the button changes the caption to Hello World.

There are many approaches that can achieve the above goal. One can submit the page to the
server, examine the POST variable, and generate a new page with the button caption updated.
Or one can simply use JavaScript to update the button caption upon its onclick event.

15

Chapter 2. Fundamentals

PRADO promotes component-based and event-driven Web programming. The button is repre-
sented by a TButton object. It encapsulates the button caption as the Text property and asso-
ciates the user button click action with a server-side Click event. Therefore, the ”Hello World”
task can be handled intuitively and easily. One simply needs to attach a function to the button’s
Click event. Within the function, the button’s Text property is modified as ”Hello World”. The
following diagram shows the above sequence,

The code that a developer needs to write is merely the following event handler function, where
$sender refers to the button object.

public function buttonClicked($sender,$param)

{

$sender->Text = "Hello World";

}

Try, http://../quickstart/index.php?page=Fundamentals.Samples.HelloWorld.Home

2.9 Sample: Hangman Game

Having seen the simple ”Hello World” application, we now build a more complex application called
”Hangman Game”. In this game, the player is asked to guess a word, a letter at a time. If he
guesses a letter right, the letter will be shown in the word. The player can continue to guess as
long as the number of his misses is within a prespecified bound. The player wins the game if he
finds out the word within the miss bound, or he loses.

To facilitate the building of this game, we show the state transition diagram of the gaming process
in the following,

To be continued...

Try, http://../quickstart/index.php?page=Fundamentals.Samples.Hangman.Home

16

2.9. Sample: Hangman Game

17

Chapter 2. Fundamentals

18

2.9. Sample: Hangman Game

19

Chapter 2. Fundamentals

20

Chapter 3

Configurations

3.1 Configuration Overview

PRADO uses configurations to glue together components into pages and applications. There are
application configurations, page configurations, and templates.

Application and page configurations are optional if default values are used. Templates are mainly
used by pages and template controls. They are optional, too.

3.2 Templates: Part I

Templates are used to specify the presentational layout of controls. A template can contain static
text, components, or controls that contribute to the ultimate presentation of the associated con-
trol. By default, an instance of TTemplateControl or its subclass may automatically load and
instantiate a template from a file whose name is the same as the control class name. For page
templates, the file name suffix must be .page; for other regular template controls, the suffix is
.tpl.

The template format is like HTML, with a few PRADO-specifc tags, including component tags,
template control tags, comment tags, dynamic content tags, and dynamic property tags. .

21

Chapter 3. Configurations

3.2.1 Component Tags

A component tag specifies a component as part of the body content of the template control. If the
component is a control, it usually will become a child or grand child of the template control, and
its rendering result will be inserted at the place where it is appearing in the template.

The format of a component tag is as follows,

<com:ComponentType PropertyName="PropertyValue" ... EventName="EventHandler" ...>

body content

</com:ComponentType>

ComponentType can be either the class name or the dotted type name (e.g. System.Web.UI.TControl)
of the component. PropertyName and EventName are both case-insensitive. PropertyName can be
a property or subproperty name (e.g. Font.Name). Note, PropertyValue will be HTML-decoded
when assigned to the corresponding property. Content enclosed between the opening and closing
component tag are normally treated the body of the component.

It is required that component tags nest properly with each other and an opening component tag be
paired with a closing tag, similar to that in XML. The following shows a component tag specifying
the Text property and Click event of a button control,

<com:TButton Text="Register" OnClick="registerUser" />

To deal conveniently with properties taking take big trunk of initial data, the following property
initialization tag is introduced,

<prop:PropertyName>

PropertyValue

</prop:PropertyName>

It is equivalent to ...PropertyName="PropertyValue"... in every aspect. Property initialization
tags must be directly enclosed between the corresponding opening and closing component tag.

22

3.2. Templates: Part I

3.2.2 Template Control Tags

A template control tag is used to configure the initial property values of the control owning the
template. Its format is as follows,

<%@ PropertyName="PropertyValue" ... %>

Like in component tags, PropertyName is case-insensitive and can be a property or subproperty
name.

Initial values specified via the template control tag are assigned to the corresponding properties
when the template control is being constructed. Therefore, you may override these property values
in a later stage, such as the Init stage of the control.

Template control tag is optional in a template. Each template can contain at most one template
control tag. You can place the template control tag anywhere in the template. It is recommended
that you place it at the beginning of the template for better visibility.

3.2.3 Comment Tags

Comment tags are used to put comments in the template or the ultimate rendering result. There
are two types of comment tags. One is like that in HTML and will be displayed to the end-users.
The other only appear in a template and will be stripped out when the template is instantiated
and displayed to the end-users. The format of these two comment tags is as follows,

<!--

Comments VISIBLE to end-users

-->

<!

Comments INVISIBLE to end-users

!>

23

Chapter 3. Configurations

3.3 Templates: Part II

3.3.1 Dynamic Content Tags

Dynamic content tags are introduced as shortcuts to some commonly used component tags. These
tags are mainly used to render contents resulted from evaluating some PHP expressions or state-
ments. They include expression tags, statement tags, databind tags, parameter tags, asset tags
and localization tags.

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template control is
being rendered. The expression evaluation result is inserted at the place where the tag resides in
the template. Its format is as follows,

<%= PhpExpression %>

Inernally, an expression tag is represented by a TExpression control. Therefore, in the expression
$this refers to the TExpression control. For example, the following expression tag will display
the current page title at the place,

<%= $this->Page->Title %>

Statement Tags

Statement tags are similar to expression tags, except that statement tags contain PHP statements
rather than expressions. The output of the PHP statements (using for example echo or print

in PHP) are displayed at the place where the statement tag resides in the template. Inernally, a
statement tag is represented by a TStatements control. Therefore, in the statements $this refers
to the TStatements control. The format of statement tags is as follows,

<%%

PHP Statements

%>

24

3.3. Templates: Part II

The following example displays the current time in Dutch at the place,

<%%

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

%>

Databind Tags

Databind tags are similar to expression tags, except that the expressions are evaluated only when a
dataBind() call is invoked on the controls representing the databind tags. Internally, a TLiteral

control is used to represent a databind tag and $this in the expression would refer to the control.
The format of databind tags is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to insert application parameters at the place where they appear in the
template. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and display the corresponding the URLs. For example,
if you have an image file that is not Web-accessible and you want to make it visible to end-users,
you can use asset tags to publish this file and show the URL to end-users so that they can fetch
the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

25

Chapter 3. Configurations

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence.

3.4 Templates: Part III

3.4.1 Dynamic Property Tags

Dynamic property tags are very similar to dynamic content tags, except that they are applied to
component properties. The purpose of dynamic property tags is to allow more versatile component
property configuration. Note, you are not required to use dynamic property tags because what
can be done using dynamic property tags can also be done in PHP code. However, using dynamic
property tags bring you much more convenience at accomplishing the same tasks. The basic usage
of dynamic property tags is as follows,

<com:ComponentType PropertyName=DynamicPropertyTag ...>

body content

</com:ComponentType>

where you may enclose DynamicPropertyTag within single or double quotes for better readability.

Like dynamic content tags, we have expression tags, databind tags, parameter tags, asset tags and
localization tags. (Note, there is no statement tag here.)

26

3.4. Templates: Part III

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template is being
instantiated. The expression evaluation result is assigned to the corresponding component property.
The format of expression tags is as follows,

<%= PhpExpression %>

In the expression, $this refers to the component specified by the component tag. The following
example specifies a TLabel control whose Text property is initialized as the current page title when
the TLabel control is being constructed,

<com:TLabel Text=<%= $this->Page->Title %> />

Note, unlike dynamic content tags, the expressions tags for component properties are evaluated
when the components are being constructed, while for the dynamic content tags, the expressions
are evaluated when the controls are being rendered.

Databind Tags

Databind tags are similar to expression tags, except that they can only be used with control
properties and the expressions are evaluated only when a dataBind() call is invoked on the controls
represented by the component tags. In the expression, $this refers to the control itself. Databind
tags do not apply to all components. They can only be used for controls.

The format of databind tags is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to assign application parameter values to the corresponding component
properties. The format of parameter tags is as follows,

<%$ ParameterName %>

27

Chapter 3. Configurations

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and assign the corresponding the URLs to the component
properties. For example, if you have an image file that is not Web-accessible and you want to make
it visible to end-users, you can use asset tags to publish this file and show the URL to end-users
so that they can fetch the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]>

where string will be translated to different languages according to the end-user’s language pref-
erence.

3.5 Application Configurations

Application configurations are used to specify the global behavior of an application. They include
specification of path aliases, namespace usages, module and service configurations, and parameters.

28

3.5. Application Configurations

Configuration for an application is stored in an XML file named application.xml, which should
be located under the application base path. Its format is shown in the following,

<application PropertyName="PropertyValue" ...>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<services>

<service id="ServiceID" class="ServiceClass" PropertyName="PropertyValue" ... />

</services>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

</application>

1. The outermost element <application> corresponds to the TApplication instance. The
PropertyName="PropertyValue" pairs specify the initial values for the properties of TApplication.

2. The <paths> element contains the definition of path aliases and the PHP inclusion paths for
the application. Each path alias is specified via an <alias> whose path attribute takes an
absolute path or a path relative to the directory containing the application configuration file.
The <using> element specifies a particular path (in terms of namespace) to be appended
to the PHP include paths when the application runs. PRADO defines two default aliases:
System and Application. The former refers to the PRADO framework root directory, and
the latter refers to the directory containing the application configuration file.

3. The <modules> element contains the configurations for a list of modules. Each module is
specified by a <module> element. Each module is uniquely identified by the id attribute and
is of type class. The PropertyName="PropertyValue" pairs specify the initial values for
the properties of the module.

4. The <services> element is similar to the <modules> element. It mainly specifies the services
provided by the application.

29

Chapter 3. Configurations

5. The <parameters> element contains a list of application-level parameters that are accessible
from anywhere in the application. You may specify component-typed parameters like spec-
ifying modules, or you may specify string-typed parameters which take a simpler format as
follows,

<parameter id="ParameterID">ParameterValue</parameter>

By default without explicit configuration, a PRADO application when running will load a few core
modules, such as THttpRequest, THttpResponse, etc. It will also provide the TPageService as a
default service. Configuration and usage of these modules and services are covered in individual
sections of this tutorial. Note, if your application takes default settings for these modules and
service, you do not need to provide an application configuration. However, if these modules or
services are not sufficient, or you want to change their behavior by configuring their property
values, you will need an application configuration.

3.6 Page Configurations

Page configurations are mainly used by TPageService to modify or append the application con-
figuration. As the name indicates, a page configuration is associated with a directory storing some
page files. It is stored as an XML file named config.xml.

When a user requests a page stored under <BasePath>/dir1/dir2, the TPageService will try
to parse and load config.xml files under <BasePath>/dir1 and <BasePath>/dir1/dir2. Paths,
modules, and parameters specified in these configuration files will be appended or merged into the
existing application configuration.

The format of a page configuration file is as follows,

<configuration>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

30

3.6. Page Configurations

<authorization>

<allow pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="get" />

<deny pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="post" />

</authorization>

<pages PropertyName="PropertyValue" ...>

<page id="PageID" PropertyName="PropertyValue" ... />

</pages>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

</configuration>

The <paths>, <modules> and <parameters> are similar to those in an application configuration.
The <authorization> specifies the authorization rules that apply to the current page directory
and all its subdirectories. It will be explained in more detail in future sections. The <pages>

element specifies the initial values for the properties of pages. Each <page> element specifies the
initial property values for a particular page identified by the id attribute. Initial property values
given in the <pages> element apply to all pages in the current directory and all its subdirectories.

31

Chapter 3. Configurations

32

Chapter 4

Controls

4.1 Controls Overview

Control are components defined in addition with user interface. Control classes constitute a major
part of the PRADO framework. Nearly every generic HTML element can find its representation in
terms of a PRADO control. Mastering these controls becomes extremely important for developers
to compose effectively and efficiently applications using PRADO.

To be continued...

4.2 Simple HTML Controls

4.2.1 TLabel

TLabel displays a piece of text on a Web page. The text to be displayed is set via its Text property.
If Text is empty, content enclosed within the TLabel component tag will be displayed. TLabel

may also be used as a form label associated with some control on the form. Since Text is not
HTML-encoded when being rendered, make sure it does not contain dangerous characters that
you want to avoid.

Try, http://../quickstart/index.php?page=Controls.Samples.TLabel.Home

33

Chapter 4. Controls

4.2.2 THyperLink

THyperLink displays a hyperlink on a page. The hyperlink URL is specified via the NavigateUrl

property, and link text is via the Text property. The link target is specified via the Target

property. It is also possible to display an image by setting the ImageUrl property. In this case,
Text is displayed as the alternate text of the image. If both ImageUrl and Text are empty, the
content enclosed within the control tag will be rendered.

Try, http://../quickstart/index.php?page=Controls.Samples.THyperLink.Home

4.2.3 TImage

TImage displays an image on a page. The image is specified via the ImageUrl property which takes
a relative or absolute URL to the image file. The alignment of the image displayed is set by the
ImageAlign property. To set alternate text or long description of the image, use AlternateText

or DescriptionUrl, respectively.

Try, http://../quickstart/index.php?page=Controls.Samples.TImage.Home

4.2.4 TPanel

TPanel acts as a presentational container for other control. It displays a ¡div¿ element on a
page. The property Wrap specifies whether the panel’s body content should wrap or not, while
HorizontalAlign governs how the content is aligned horizontally and Direction indicates the
content direction (left to right or right to left). You can set BackImageUrl to give a background
image to the panel, and you can ste GroupingText so that the panel is displayed as a field set with
a legend text. Finally, you can specify a default button to be fired when users press ’return’ key
within the panel by setting the DefaultButton property.

Try, http://../quickstart/index.php?page=Controls.Samples.TPanel.Home

4.2.5 TTable

TTable displays an HTML table on a page. It is used together with TTableRow and TTableCell

to allow programmatically manipulating HTML tables. The rows of the table is stored in Rows

property. You may set the table cellspacing and cellpadding via the CellSpacing and CellPadding

34

4.2. Simple HTML Controls

properties, respectively. The table caption can be specified via Caption whose alignment is specified
by CaptionAlign. The GridLines property indicates how the table should display its borders,
and the BackImageUrl allows the table to have a background image.

Try, http://../quickstart/index.php?page=Controls.Samples.TTable.Home

4.2.6 TTextBox

TTextBox displays a text box on a Web page. The content in the text box is determined by the
Text property. You can create a SingleLine, a MultiLine, or a Password text box by setting the
TextMode property. The Rows and Columns properties specify their dimensions. If AutoPostBack
is true, changing the content in the text box and then moving the focus out of it will cause postback
action.

Try, http://../quickstart/index.php?page=Controls.Samples.TTextBox.Home

4.2.7 TButton

TButton creates a click button on a Web page. The button’s caption is specified by Text property.
A button is used to submit data to a page. TButton raises two server-side events, Click and
Command, when it is clicked on the client-side. The difference between Click and Command events is
that the latter event is bubbled up to the button’s ancestor controls. A Command event handler can
use CommandName and CommandParameter associated with the event to perform specific actions.

Clicking on button can trigger form validation, if CausesValidationis true. And the validation
may be restricted within a certain group of validator controls according to ValidationGroup.

Try, http://../quickstart/index.php?page=Controls.Samples.TButton.Home

4.2.8 TLinkButton

TLinkButton is similar to TButton in every aspect except that TLinkButton is displayed as a
hyperlink. The link text is determined by its Text property. If the Text property is empty, then
the body content of the button is displayed (therefore, you can enclose a ¡img¿ tag within the
button body and get an image button.

35

Chapter 4. Controls

Try, http://../quickstart/index.php?page=Controls.Samples.TLinkButton.Home

4.2.9 TImageButton

TImageButton is also similar to TButton, except that TImageButton displays the button as an
image. The image is specified via ImageUrl, and the alternate text is specified by Text. In
addition, it is possible to obtain the coordinate of the point where the image is clicked. The
coordinate information is contained in the event parameter of the Click event (not Command).

Try, http://../quickstart/index.php?page=Controls.Samples.TImageButton.Home

4.2.10 TCheckBox

TCheckBox displays a check box on a Web page. A caption can be specified via Text and displayed
beside the check box. It can appear either on the right or left of the check box, which is determined
by TextAlign. You may further specify attributes applied to the text by using LabelAttributes.

To determine whether the check box is checked, test the Checked property. A CheckedChanged

event is raised if the state of Checked is changed between posts to the server. If AutoPostBack is
true, changing the check box state will cause postback action. And if CausesValidation is also
true, upon postback validation will be performed for validators within the specified ValidationGroup.

Try, http://../quickstart/index.php?page=Controls.Samples.TCheckBox.Home

4.2.11 TRadioButton

TRadioButton is similar to TCheckBox in every aspect, except that TRadioButton displays a radio
button on a Web page. The radio button can belong to a specific group specified by GroupName

such that only one radio button within that group can be selected at most.

Try, http://../quickstart/index.php?page=Controls.Samples.TRadioButton.Home

36

4.3. List Controls

4.3 List Controls

List controls covered in this section all inherit directly or indirectly from TListControl. Therefore,
they share the same set of commonly used properties, including,

1. Items - list of items in the control. The items are of type TListItem. The item list can be
populated via databinding or specified in templates like the following:

<com:TListBox>

<com:TListItem Text="text 1" Value="value 1" />

<com:TListItem Text="text 2" Value="value 2" Selected="true" />

<com:TListItem Text="text 3" Value="value 3" />

</com:TListBox>

2. SelectedIndex - the zero-based index of the first selected item in the item list.

3. SelectedIndices - the indices of all selected items.

4. SelectedItem - the first selected item in the item list.

5. SelectedValue - the value of the first selected item in the item list.

6. AutoPostBack - whether changing the selection of the control should trigger postback.

7. CausesValidation - whether validation should be performed when postback is triggered by
the list control.

Since TListControl inherits from TDataBoundControl, these list controls also share a common
operation known as databinding. The data to be bound can be specified via either DataSource

or DataSourceID. More details about databinding are covered in later chapters of this tutorial.

4.3.1 TListBox

TListBox displays a list box that allows single or multiple selection. Set the property SelectionMode

as Single to make a single selection list box, and Multiple a multiple selection list box. The items
in the list box are represented by the Items property. The number of rows displayed in the box is
specified via the Rows property value.

Try, http://../quickstart/index.php?page=Controls.Samples.TListBox.Home

37

Chapter 4. Controls

4.3.2 TDropDownList

TDropDownList displays a dropdown list box that allows users to select a single option from a few
prespecified ones. The items in the list box are represented by the Items property. The selected
item can be retrieved via SelectedItem property. If AutoPostBack is true, selection change will
cause page postback.

Try, http://../quickstart/index.php?page=Controls.Samples.TDropDownList.Home

4.3.3 TCheckBoxList

Try, http://../quickstart/index.php?page=Controls.Samples.TCheckBoxList.Home

4.3.4 TRadioButtonList

Try, http://../quickstart/index.php?page=Controls.Samples.TRadioButtonList.Home

4.3.5 TBulletList

Try, http://../quickstart/index.php?page=Controls.Samples.TBulletedList.Home

4.4 Validation Controls

4.4.1 TRequiredFieldValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TRequiredFieldValidator.Home

4.4.2 TRegularExpressionValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TRegularExpressionValidator.Home

38

4.5. TDataList

4.4.3 TEmailAddressValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TEmailAddressValidator.Home

4.4.4 TEmailAddressValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TEmailAddressValidator.Home

4.4.5 TCompareValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TCompareValidator.Home

4.4.6 TCustomValidator

Try, http://../quickstart/index.php?page=Controls.Samples.TCustomValidator.Home

4.4.7 TValidationSummary

Try, http://../quickstart/index.php?page=Controls.Samples.TValidationSummary.Home

4.5 TDataList

TBC

Try, http://../quickstart/index.php?page=Controls.Samples.TDataList.Sample1

4.6 TDataGrid

TBC

Try, http://../quickstart/index.php?page=Controls.Samples.TDataGrid.Sample1

39

	Contents
	Preface
	Getting Started
	Welcome to the PRADO QuickStart Tutorial
	What is PRADO?
	Installing PRADO

	Fundamentals
	Architecture
	Components
	Component Properties
	Component Events
	Namespaces
	Component Instantiation

	Controls
	Control Tree
	Control Identification
	Naming Containers
	ViewState and ControlState

	Pages
	PostBack
	Page Lifecycles

	Modules
	Request Module
	Response Module
	Session Module
	Error Handler Module
	Custom Modules

	Services
	Page Service

	Applications
	Directory Organization
	Application Deployment
	Application Lifecycles

	Sample: Hello World
	Sample: Hangman Game

	Configurations
	Configuration Overview
	Templates: Part I
	Component Tags
	Template Control Tags
	Comment Tags

	Templates: Part II
	Dynamic Content Tags

	Templates: Part III
	Dynamic Property Tags

	Application Configurations
	Page Configurations

	Controls
	Controls Overview
	Simple HTML Controls
	TLabel
	THyperLink
	TImage
	TPanel
	TTable
	TTextBox
	TButton
	TLinkButton
	TImageButton
	TCheckBox
	TRadioButton

	List Controls
	TListBox
	TDropDownList
	TCheckBoxList
	TRadioButtonList
	TBulletList

	Validation Controls
	TRequiredFieldValidator
	TRegularExpressionValidator
	TEmailAddressValidator
	TEmailAddressValidator
	TCompareValidator
	TCustomValidator
	TValidationSummary

	TDataList
	TDataGrid

